Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1990 Jan 1;95(1):97–120. doi: 10.1085/jgp.95.1.97

Calcium-independent cell volume regulation in human lymphocytes. Inhibition by charybdotoxin

PMCID: PMC2216288  PMID: 1688915

Abstract

The properties of the K+ pathway underlying regulatory volume decrease (RVD) in human blood lymphocytes were investigated. Evidence is presented for the existence of three types of K+ conductance in these cells. Ionomycin, a Ca2+ ionophore, induced a K(+)-dependent hyperpolarization, indicating the presence of Ca2(+)-activated K+ channels, which were blocked by charybdotoxin (CTX). CTX also induced a depolarization of the resting membrane potential, even at subphysiological cytosolic [Ca2+]([Ca2+]i), which suggests the existence of a second CTX-sensitive, but Ca2(+)-independent conductance. A CTX-resistant K+ conductance was also detected. RVD in blood lymphocytes was partially (approximately 75%) blocked by CTX. However, volume regulation was not accompanied by detectable changes in [Ca2+]i, nor was it prevented by removal of extracellular Ca2+ and depletion or buffering of intracellular Ca2+. These observations suggest that K+ loss during RVD is mediated by Ca2(+)-independent, CTX- sensitive channels or that Ca2(+)-dependent channels can be activated by cell swelling at normal or subnormal [Ca2+]i. The former interpretation is supported by findings in rat thymic lymphocytes. These cells also displayed a CTX-sensitive Ca2(+)-dependent hyperpolarization. However, CTX did not significantly alter the resting potential, suggesting the absence of functional Ca2(+)-independent, toxin-sensitive channels. Volume regulation in thymic lymphocytes was less efficient than in human blood cells. In contrast to blood lymphocytes, RVD in thymocytes was not affected by CTX. These observations indicate that, though present in lymphocytes, Ca2(+)- activated K+ channels do not play an important role in volume regulation. Instead, RVD seems to be mediated by Ca2(+)-independent K+ channels. We propose that two types of channels, one CTX sensitive and the other CTX insensitive, mediate RVD in human blood lymphocytes, whereas only the latter type is involved in rat thymocytes.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. S., MacKinnon R., Smith C., Miller C. Charybdotoxin block of single Ca2+-activated K+ channels. Effects of channel gating, voltage, and ionic strength. J Gen Physiol. 1988 Mar;91(3):317–333. doi: 10.1085/jgp.91.3.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bregestovski P., Redkozubov A., Alexeev A. Elevation of intracellular calcium reduces voltage-dependent potassium conductance in human T cells. 1986 Feb 27-Mar 5Nature. 319(6056):776–778. doi: 10.1038/319776a0. [DOI] [PubMed] [Google Scholar]
  3. Cahalan M. D., Lewis R. S. Role of potassium and chloride channels in volume regulation by T lymphocytes. Soc Gen Physiol Ser. 1988;43:281–301. [PubMed] [Google Scholar]
  4. Cala P. M. Cell volume regulation by Amphiuma red blood cells. The role of Ca+2 as a modulator of alkali metal/H+ exchange. J Gen Physiol. 1983 Dec;82(6):761–784. doi: 10.1085/jgp.82.6.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cala P. M. Volume regulation by Amphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion-flux pathways. J Gen Physiol. 1980 Dec;76(6):683–708. doi: 10.1085/jgp.76.6.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheung R. K., Grinstein S., Gelfand E. W. Volume regulation by human lymphocytes. Identification of differences between the two major lymphocyte subpopulations. J Clin Invest. 1982 Sep;70(3):632–638. doi: 10.1172/JCI110657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Choquet D., Sarthou P., Primi D., Cazenave P. A., Korn H. Cyclic AMP-modulated potassium channels in murine B cells and their precursors. Science. 1987 Mar 6;235(4793):1211–1214. doi: 10.1126/science.2434998. [DOI] [PubMed] [Google Scholar]
  8. Christensen O. Mediation of cell volume regulation by Ca2+ influx through stretch-activated channels. Nature. 1987 Nov 5;330(6143):66–68. doi: 10.1038/330066a0. [DOI] [PubMed] [Google Scholar]
  9. DeCoursey T. E., Chandy K. G., Gupta S., Cahalan M. D. Voltage-dependent ion channels in T-lymphocytes. J Neuroimmunol. 1985 Nov;10(1):71–95. doi: 10.1016/0165-5728(85)90035-9. [DOI] [PubMed] [Google Scholar]
  10. DeCoursey T. E., Chandy K. G., Gupta S., Cahalan M. D. Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature. 1984 Feb 2;307(5950):465–468. doi: 10.1038/307465a0. [DOI] [PubMed] [Google Scholar]
  11. Deutsch C., Krause D., Lee S. C. Voltage-gated potassium conductance in human T lymphocytes stimulated with phorbol ester. J Physiol. 1986 Mar;372:405–423. doi: 10.1113/jphysiol.1986.sp016016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eveloff J. L., Warnock D. G. Activation of ion transport systems during cell volume regulation. Am J Physiol. 1987 Jan;252(1 Pt 2):F1–10. doi: 10.1152/ajprenal.1987.252.1.F1. [DOI] [PubMed] [Google Scholar]
  13. Gallin E. K. Ionic channels in leukocytes. J Leukoc Biol. 1986 Mar;39(3):241–254. doi: 10.1002/jlb.39.3.241. [DOI] [PubMed] [Google Scholar]
  14. Gimenez-Gallego G., Navia M. A., Reuben J. P., Katz G. M., Kaczorowski G. J., Garcia M. L. Purification, sequence, and model structure of charybdotoxin, a potent selective inhibitor of calcium-activated potassium channels. Proc Natl Acad Sci U S A. 1988 May;85(10):3329–3333. doi: 10.1073/pnas.85.10.3329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grinstein S., Clarke C. A., Dupre A., Rothstein A. Volume-induced increase of anion permeability in human lymphocytes. J Gen Physiol. 1982 Dec;80(6):801–823. doi: 10.1085/jgp.80.6.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grinstein S., Dixon S. J. Ion transport, membrane potential, and cytoplasmic pH in lymphocytes: changes during activation. Physiol Rev. 1989 Apr;69(2):417–481. doi: 10.1152/physrev.1989.69.2.417. [DOI] [PubMed] [Google Scholar]
  17. Grinstein S., Dupre A., Rothstein A. Volume regulation by human lymphocytes. Role of calcium. J Gen Physiol. 1982 May;79(5):849–868. doi: 10.1085/jgp.79.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Grinstein S., Goetz J. D., Rothstein A. 22Na+ fluxes in thymic lymphocytes. I. Na+/Na+ and Na+/H+ exchange through an amiloride-insensitive pathway. J Gen Physiol. 1984 Oct;84(4):565–584. doi: 10.1085/jgp.84.4.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Grinstein S., Rothstein A., Sarkadi B., Gelfand E. W. Responses of lymphocytes to anisotonic media: volume-regulating behavior. Am J Physiol. 1984 Mar;246(3 Pt 1):C204–C215. doi: 10.1152/ajpcell.1984.246.3.C204. [DOI] [PubMed] [Google Scholar]
  20. Grinstein S., Smith J. D. Ca2+ induces charybdotoxin-sensitive membrane potential changes in rat lymphocytes. Am J Physiol. 1989 Aug;257(2 Pt 1):C197–C206. doi: 10.1152/ajpcell.1989.257.2.C197. [DOI] [PubMed] [Google Scholar]
  21. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  22. Guharay F., Sachs F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol. 1984 Jul;352:685–701. doi: 10.1113/jphysiol.1984.sp015317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hermann A., Erxleben C. Charybdotoxin selectively blocks small Ca-activated K channels in Aplysia neurons. J Gen Physiol. 1987 Jul;90(1):27–47. doi: 10.1085/jgp.90.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hoffmann E. K. Anion transport systems in the plasma membrane of vertebrate cells. Biochim Biophys Acta. 1986 Jun 12;864(1):1–31. doi: 10.1016/0304-4157(86)90014-6. [DOI] [PubMed] [Google Scholar]
  25. Hoffmann E. K. Role of separate K+ and Cl- channels and of Na+/Cl- cotransport in volume regulation in Ehrlich cells. Fed Proc. 1985 Jun;44(9):2513–2519. [PubMed] [Google Scholar]
  26. Ishida Y., Chused T. M. Heterogeneity of lymphocyte calcium metabolism is caused by T cell-specific calcium-sensitive potassium channel and sensitivity of the calcium ATPase pump to membrane potential. J Exp Med. 1988 Sep 1;168(3):839–852. doi: 10.1084/jem.168.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lee S. C., Price M., Prystowsky M. B., Deutsch C. Volume response of quiescent and interleukin 2-stimulated T-lymphocytes to hypotonicity. Am J Physiol. 1988 Feb;254(2 Pt 1):C286–C296. doi: 10.1152/ajpcell.1988.254.2.C286. [DOI] [PubMed] [Google Scholar]
  28. Lewis S. A., de Moura J. L. Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder epithelium. Nature. 1982 Jun 24;297(5868):685–688. doi: 10.1038/297685a0. [DOI] [PubMed] [Google Scholar]
  29. Matteson D. R., Deutsch C. K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature. 1984 Feb 2;307(5950):468–471. doi: 10.1038/307468a0. [DOI] [PubMed] [Google Scholar]
  30. Miller C., Moczydlowski E., Latorre R., Phillips M. Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature. 1985 Jan 24;313(6000):316–318. doi: 10.1038/313316a0. [DOI] [PubMed] [Google Scholar]
  31. Nasmith P. E., Grinstein S. Phorbol ester-induced changes in cytoplasmic Ca2+ in human neutrophils. Involvement of a pertussis toxin-sensitive G protein. J Biol Chem. 1987 Oct 5;262(28):13558–13566. [PubMed] [Google Scholar]
  32. Novak J. M., Cala P. M., Ward D. M., Buys S. S., Kaplan J. Regulatory volume decrease in alveolar macrophages: cation loss is not correlated with changes in membrane recycling. J Cell Physiol. 1988 Nov;137(2):243–250. doi: 10.1002/jcp.1041370206. [DOI] [PubMed] [Google Scholar]
  33. Petersen O. H., Maruyama Y. Calcium-activated potassium channels and their role in secretion. Nature. 1984 Feb 23;307(5953):693–696. doi: 10.1038/307693a0. [DOI] [PubMed] [Google Scholar]
  34. Quastel M. R., Segel G. B., Lichtman M. A. The effect of calcium chelation on lymphocyte monovalent cation permeability, transport and concentration. J Cell Physiol. 1981 May;107(2):165–170. doi: 10.1002/jcp.1041070202. [DOI] [PubMed] [Google Scholar]
  35. Rink R. J., Sanchez A., Grinstein S., Rothstein A. Volume restoration in osmotically swollen lymphocytes does not involve changes in free Ca2+ concentration. Biochim Biophys Acta. 1983 Jul 14;762(4):593–596. doi: 10.1016/0167-4889(83)90064-2. [DOI] [PubMed] [Google Scholar]
  36. Rink T. J., Deutsch C. Calcium-activated potassium channels in lymphocytes. Cell Calcium. 1983 Dec;4(5-6):463–473. doi: 10.1016/0143-4160(83)90022-2. [DOI] [PubMed] [Google Scholar]
  37. Rink T. J., Montecucco C., Hesketh T. R., Tsien R. Y. Lymphocyte membrane potential assessed with fluorescent probes. Biochim Biophys Acta. 1980;595(1):15–30. doi: 10.1016/0005-2736(80)90243-6. [DOI] [PubMed] [Google Scholar]
  38. Sackin H. Stretch-activated potassium channels in renal proximal tubule. Am J Physiol. 1987 Dec;253(6 Pt 2):F1253–F1262. doi: 10.1152/ajprenal.1987.253.6.F1253. [DOI] [PubMed] [Google Scholar]
  39. Schwarz W., Passow H. Ca2+-activated K+ channels in erythrocytes and excitable cells. Annu Rev Physiol. 1983;45:359–374. doi: 10.1146/annurev.ph.45.030183.002043. [DOI] [PubMed] [Google Scholar]
  40. Simons T. J. The preparation of human red cell ghosts containing calcium buffers. J Physiol. 1976 Mar;256(1):209–225. doi: 10.1113/jphysiol.1976.sp011321. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES