Abstract
Whether a given dose of ouabain will produce inotropic or toxic effects depends on factors that affect the apparent affinity (K0.5) of the Na/K pump for ouabain. To accurately resolve these factors, especially the effect of intracellular Na concentration (Nai), we have applied three complementary techniques for measuring the K0.5 for ouabain in cultured embryonic chick cardiac myocytes. Under control conditions with 5.4 mM Ko, the value of the K0.5 for ouabain was 20.6 +/- 1.2, 12.3 +/- 1.7, and 6.6 +/- 0.4 microM, measured by voltage-clamp, Na-selective microelectrode, and equilibrium [3H]ouabain-binding techniques, respectively. A significant difference in the three techniques was the time of exposure to ouabain (30 s-30 min). Since increased duration of exposure to ouabain would increase Nai, monensin was used to raise Nai to investigate what effect Nai might have on the apparent affinity of block by ouabain. Monensin enhanced the rise in Na content induced by 1 microM ouabain. In the presence of 1 microM [3H]ouabain, total binding was found to be a saturating function of Na content. Using the voltage- clamp method, we found that the value of the K0.5 for ouabain was lowered by nearly an order of magnitude in the presence of 3 microM monensin to 2.4 +/- 0.2 microM and the magnitude of the Na/K pump current was increased about threefold. Modeling the Na/K pump as a cyclic sequence of states with a single state having high affinity for ouabain shows that changes in Nai alone are sufficient to cause a 10- fold change in K0.5. These results suggest that Nai reduces the value of the apparent affinity of the Na/K pump for ouabain in 5.4 mM Ko by increasing its turnover rate, thus increasing the availability of the conformation of the Na/K pump that binds ouabain with high affinity.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akera T., Olgaard M. K., Temma K., Brody T. M. Development of the positive inotropic action of ouabain: effects of transmembrane sodium movement. J Pharmacol Exp Ther. 1977 Dec;203(3):675–684. [PubMed] [Google Scholar]
- Barcenas-Ruiz L., Beuckelmann D. J., Wier W. G. Sodium-calcium exchange in heart: membrane currents and changes in [Ca2+]i. Science. 1987 Dec 18;238(4834):1720–1722. doi: 10.1126/science.3686010. [DOI] [PubMed] [Google Scholar]
- Bentfeld M., Lüllmann H., Peters T., Proppe D. Interdependence of ion transport and the action of quabain in heart muscle. Br J Pharmacol. 1977 Sep;61(1):19–27. doi: 10.1111/j.1476-5381.1977.tb09735.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biedert S., Barry W. H., Smith T. W. Inotropic effects and changes in sodium and calcium contents associated with inhibition of monovalent cation active transport by ouabain in cultured myocardial cells. J Gen Physiol. 1979 Oct;74(4):479–494. doi: 10.1085/jgp.74.4.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brody T. M., Temma K., Kennedy R. H., Akera T. The dual effect of sodium ion on the digitalis-sodium pump interaction. Eur Heart J. 1984 Dec;5 (Suppl F):291–296. doi: 10.1093/eurheartj/5.suppl_f.291. [DOI] [PubMed] [Google Scholar]
- Brown L., Erdmann E. Binding of dihydrodigitoxin to beef and human cardiac (Na+ + K+)-ATPase: evidence for two binding sites in cell membranes. Biochem Pharmacol. 1983 Nov 1;32(21):3183–3190. doi: 10.1016/0006-2952(83)90202-2. [DOI] [PubMed] [Google Scholar]
- Busse F., Lüllman H., Peters T. Concentration dependence of the binding of ouabain to isolated guinea pig atria. J Cardiovasc Pharmacol. 1979 Nov-Dec;1(6):687–698. doi: 10.1097/00005344-197911000-00009. [DOI] [PubMed] [Google Scholar]
- Chapman J. B., Johnson E. A., Kootsey J. M. Electrical and biochemical properties of an enzyme model of the sodium pump. J Membr Biol. 1983;74(2):139–153. doi: 10.1007/BF01870503. [DOI] [PubMed] [Google Scholar]
- Cohen I. S., Datyner N. B., Gintant G. A., Mulrine N. K., Pennefather P. Properties of an electrogenic sodium-potassium pump in isolated canine Purkinje myocytes. J Physiol. 1987 Feb;383:251–267. doi: 10.1113/jphysiol.1987.sp016407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daut J., Rüdel R. The electrogenic sodium pump in guinea-pig ventricular muscle: inhibition of pump current by cardiac glycosides. J Physiol. 1982 Sep;330:243–264. doi: 10.1113/jphysiol.1982.sp014339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ebner F., Siegl H. Frequent stimulation of the guinea-pig myocardium raises the inotropic efficacy of tissue-bound ouabain. Naunyn Schmiedebergs Arch Pharmacol. 1986 Dec;334(4):475–479. doi: 10.1007/BF00569389. [DOI] [PubMed] [Google Scholar]
- Eisner D. A., Lederer W. J., Vaughan-Jones R. D. The effects of rubidium ions and membrane potentials on the intracellular sodium activity of sheep Purkinje fibres. J Physiol. 1981 Aug;317:189–205. doi: 10.1113/jphysiol.1981.sp013820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedman I., Schwab H., Hallaq H., Pinson A., Heller M. Interactions of cardiac glycosides with cultured cardiac cells. II. Biochemical and electron microscopic studies on the effects of ouabain on muscle and non-muscle cells. Biochim Biophys Acta. 1980 May 23;598(2):272–284. doi: 10.1016/0005-2736(80)90005-x. [DOI] [PubMed] [Google Scholar]
- Haber R. S., Pressley T. A., Loeb J. N., Ismail-Beigi F. Ionic dependence of active Na-K transport: "clamping" of cellular Na+ with monensin. Am J Physiol. 1987 Jul;253(1 Pt 2):F26–F33. doi: 10.1152/ajprenal.1987.253.1.F26. [DOI] [PubMed] [Google Scholar]
- Hansen O. Interaction of cardiac glycosides with (Na+ + K+)-activated ATPase. A biochemical link to digitalis-induced inotropy. Pharmacol Rev. 1984 Sep;36(3):143–163. [PubMed] [Google Scholar]
- Herzig S., Lüllmann H., Mohr K. On the cooperativity of ouabain-binding to intact myocardium. J Mol Cell Cardiol. 1985 Nov;17(11):1095–1104. doi: 10.1016/s0022-2828(85)80125-5. [DOI] [PubMed] [Google Scholar]
- Herzig S., Lüllmann H., Mohr K., Schmitz R. Interpretation of [3H]ouabain binding in guinea-pig ventricular myocardium in relation to sodium pump activity. J Physiol. 1988 Feb;396:105–120. doi: 10.1113/jphysiol.1988.sp016953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herzig S., Mohr K. Action of ouabain on rat heart: comparison with its effect on guinea-pig heart. Br J Pharmacol. 1984 May;82(1):135–142. doi: 10.1111/j.1476-5381.1984.tb16450.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herzig S., Mohr K. Sodium load and high affinity ouabain binding in rat and guinea-pig cardiac tissue. Br J Pharmacol. 1985 Mar;84(3):685–688. doi: 10.1111/j.1476-5381.1985.tb16150.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hootman S. R., Ernst S. A. Estimation of Na,K-pump numbers and turnover in intact cells with [3H]ouabain. Methods Enzymol. 1988;156:213–229. doi: 10.1016/0076-6879(88)56023-8. [DOI] [PubMed] [Google Scholar]
- Horres C. R., Lieberman M., Purdy J. E. Growth orientation of heart cells on nylon monofilament. Determination of the volume-to-surface area ratio and intracellular potassium concentration. J Membr Biol. 1977 Jun 15;34(4):313–329. doi: 10.1007/BF01870306. [DOI] [PubMed] [Google Scholar]
- Hume J. R., Uehara A. Properties of "creep currents" in single frog atrial cells. J Gen Physiol. 1986 Jun;87(6):833–855. doi: 10.1085/jgp.87.6.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kazazoglou T., Renaud J. F., Rossi B., Lazdunski M. Two classes of ouabain receptors in chick ventricular cardiac cells and their relation to (Na+,K+)-ATPase inhibition, intracellular Na+ accumulation, Ca2+ influx, and cardiotonic effect. J Biol Chem. 1983 Oct 25;258(20):12163–12170. [PubMed] [Google Scholar]
- Kim D., Barry W. H., Smith T. W. Kinetics of ouabain binding and changes in cellular sodium content, 42K+ transport and contractile state during ouabain exposure in cultured chick heart cells. J Pharmacol Exp Ther. 1984 Nov;231(2):326–333. [PubMed] [Google Scholar]
- Lee C. O. 200 years of digitalis: the emerging central role of the sodium ion in the control of cardiac force. Am J Physiol. 1985 Nov;249(5 Pt 1):C367–C378. doi: 10.1152/ajpcell.1985.249.5.C367. [DOI] [PubMed] [Google Scholar]
- Liu S., Jacob R., Piwnica-Worms D., Lieberman M. (Na + K + 2Cl) cotransport in cultured embryonic chick heart cells. Am J Physiol. 1987 Nov;253(5 Pt 1):C721–C730. doi: 10.1152/ajpcell.1987.253.5.C721. [DOI] [PubMed] [Google Scholar]
- Lobaugh L. A., Lieberman M. Na-K pump site density and ouabain binding affinity in cultured chick heart cells. Am J Physiol. 1987 Nov;253(5 Pt 1):C731–C743. doi: 10.1152/ajpcell.1987.253.5.C731. [DOI] [PubMed] [Google Scholar]
- Lutz R. A., Lichtstein D., Xu H., Rodbard D. Demonstration and characterization of two classes of cardiac glycoside binding sites to rat heart membrane preparations using quantitative computer modeling. J Recept Res. 1987;7(5):679–694. doi: 10.3109/10799898709056779. [DOI] [PubMed] [Google Scholar]
- Matsui H., Schwartz A. Mechanism of cardiac glycoside inhibition of the (Na+-K+)-dependent ATPase from cardiac tissue. Biochim Biophys Acta. 1968 Mar 25;151(3):655–663. doi: 10.1016/0005-2744(68)90013-2. [DOI] [PubMed] [Google Scholar]
- Mendoza S. A., Wigglesworth N. M., Pohjanpelto P., Rozengurt E. Na entry and Na-K pump activity in murine, hamster, and human cells--effect of monensin, serum, platelet extract, and viral transformation. J Cell Physiol. 1980 Apr;103(1):17–27. doi: 10.1002/jcp.1041030104. [DOI] [PubMed] [Google Scholar]
- Moran N. C. Contraction dependency of the positive inotropic action of cardiac glycosides. Circ Res. 1967 Nov;21(5):727–740. doi: 10.1161/01.res.21.5.727. [DOI] [PubMed] [Google Scholar]
- Murphy E., Aiton J. F., Horres C. R., Lieberman M. Calcium elevation in cultured heart cells: its role in cell injury. Am J Physiol. 1983 Nov;245(5 Pt 1):C316–C321. doi: 10.1152/ajpcell.1983.245.5.C316. [DOI] [PubMed] [Google Scholar]
- Pressman B. C. Biological applications of ionophores. Annu Rev Biochem. 1976;45:501–530. doi: 10.1146/annurev.bi.45.070176.002441. [DOI] [PubMed] [Google Scholar]
- Schremmer S. D., Waser M. R., Kohn M. C., Garfinkel D. A computer program for analyzing enzyme kinetic data using graphical display and statistical analysis. Comput Biomed Res. 1984 Jun;17(3):289–301. doi: 10.1016/s0010-4809(84)80020-8. [DOI] [PubMed] [Google Scholar]
- Schwartz A., Lindenmayer G. E., Allen J. C. The sodium-potassium adenosine triphosphatase: pharmacological, physiological and biochemical aspects. Pharmacol Rev. 1975 Mar;27(01):3–134. [PubMed] [Google Scholar]
- Sperelakis N., Lee E. C. Characterization of (Na + ,K + )-ATPase isolated from embryonic chick hearts and cultured chick heart cells. Biochim Biophys Acta. 1971 Jun 1;233(3):562–579. doi: 10.1016/0005-2736(71)90155-6. [DOI] [PubMed] [Google Scholar]
- Stemmer P., Akera T. Apparent cooperativity of [3H]ouabain binding to myocytes obtained from guinea-pig heart. Biochim Biophys Acta. 1988 Jan 22;937(2):247–257. doi: 10.1016/0005-2736(88)90247-7. [DOI] [PubMed] [Google Scholar]
- Temma K., Akera T. Enhancement of cardiac actions of ouabain and its binding to Na+, K+-adenosine triphosphatase by increased sodium influx in isolated guinea-pig heart. J Pharmacol Exp Ther. 1982 Nov;223(2):490–496. [PubMed] [Google Scholar]
- Wellsmith N. V., Lindenmayer G. E. Two receptor forms for ouabain in sarcolemma-enriched preparations from canine ventricle. Circ Res. 1980 Nov;47(5):710–720. doi: 10.1161/01.res.47.5.710. [DOI] [PubMed] [Google Scholar]
- Werdan K., Wagenknecht B., Zwissler B., Brown L., Krawietz W., Erdmann E. Cardiac glycoside receptors in cultured heart cells--I. Characterization of one single class of high affinity receptors in heart muscle cells from chick embryos. Biochem Pharmacol. 1984 Jan 1;33(1):55–70. doi: 10.1016/0006-2952(84)90370-8. [DOI] [PubMed] [Google Scholar]
- Werdan K., Wagenknecht B., Zwissler B., Brown L., Krawietz W., Erdmann E. Cardiac glycoside receptors in cultured heart cells--II. Characterization of a high affinity and a low affinity binding site in heart muscle cells from neonatal rats. Biochem Pharmacol. 1984 Jun 15;33(12):1873–1886. doi: 10.1016/0006-2952(84)90542-2. [DOI] [PubMed] [Google Scholar]