Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1990 Feb 1;95(2):297–317. doi: 10.1085/jgp.95.2.297

Nonlinear signal transmission between second- and third-order neurons of cockroach ocelli

PMCID: PMC2216317  PMID: 2155282

Abstract

Transfer characteristics of the synapse made from second- to third- order neurons of cockroach ocelli were studied using simultaneous microelectrode penetrations and the application of tetrodotoxin. Potential changes were evoked in second-order neurons by either an extrinsic current or a sinusoidally modulated light. The synapse had a low-pass filter characteristic with a cutoff frequency of 25-30 Hz, which passed most presynaptic signals. The synapse operated at an exponentially rising part of the overall sigmoidal input/output curve relating pre- and postsynaptic voltages. Although the response of the second-order neuron to sinusoidal light was essentially linear, the response of the third-order neuron contained an accelerating nonlinearity: the response amplitude was a positively accelerated function of the stimulus contrast, reflecting nonlinear synaptic transmission. The response of the third-order neuron exhibited a half- wave rectification: the depolarizing response to light decrement was much larger than the hyperpolarizing response to light increment. Nonlinear synaptic transmission also enhanced the transient response to step-like intensity changes. I conclude that (a) the major function of synaptic transmission between second- and third-order neurons of cockroach ocelli is to convert linear presynaptic signals into nonlinear ones and that (b) signal transmission at the synapse between second- and third-order neurons of cockroach ocelli fundamentally differs from that at the synapse between photoreceptors and second- order neurons of visual systems so far studied, where the synapse operates in the midregion of the characteristic curve and the transmission is essentially linear.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylor D. A., Hodgkin A. L. Changes in time scale and sensitivity in turtle photoreceptors. J Physiol. 1974 Nov;242(3):729–758. doi: 10.1113/jphysiol.1974.sp010732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Belgum J. H., Copenhagen D. R. Synaptic transfer of rod signals to horizontal and bipolar cells in the retina of the toad (Bufo marinus). J Physiol. 1988 Feb;396:225–245. doi: 10.1113/jphysiol.1988.sp016960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chappell R. L., Dowling J. E. Neural organization of the median ocellus of the dragonfly. I. Intracellular electrical activity. J Gen Physiol. 1972 Aug;60(2):121–147. doi: 10.1085/jgp.60.2.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chappell R. L., Naka K., Sakuranaga M. Dynamics of turtle horizontal cell response. J Gen Physiol. 1985 Sep;86(3):423–453. doi: 10.1085/jgp.86.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dowling J. E., Chappell R. L. Neural organization of the median ocellus of the dragonfly. II. Synaptic structure. J Gen Physiol. 1972 Aug;60(2):148–165. doi: 10.1085/jgp.60.2.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Enroth-Cugell C., Freeman A. W. The receptive-field spatial structure of cat retinal Y cells. J Physiol. 1987 Mar;384:49–79. doi: 10.1113/jphysiol.1987.sp016443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FUORTES M. G., HODGKIN A. L. CHANGES IN TIME SCALE AND SENSITIVITY IN THE OMMATIDIA OF LIMULUS. J Physiol. 1964 Aug;172:239–263. doi: 10.1113/jphysiol.1964.sp007415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hayashi J. H., Moore J. W., Stuart A. E. Adaptation in the input-output relation of the synapse made by the barnacle's photoreceptor. J Physiol. 1985 Nov;368:179–195. doi: 10.1113/jphysiol.1985.sp015852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hochstein S., Shapley R. M. Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. J Physiol. 1976 Nov;262(2):265–284. doi: 10.1113/jphysiol.1976.sp011595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Katz B., Miledi R. A study of synaptic transmission in the absence of nerve impulses. J Physiol. 1967 Sep;192(2):407–436. doi: 10.1113/jphysiol.1967.sp008307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Knight B. W., Toyoda J. I., Dodge F. A., Jr A quantitative description of the dynamics of excitation and inhibition in the eye of Limulus. J Gen Physiol. 1970 Oct;56(4):421–437. doi: 10.1085/jgp.56.4.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laughlin S. B., Howard J., Blakeslee B. Synaptic limitations to contrast coding in the retina of the blowfly Calliphora. Proc R Soc Lond B Biol Sci. 1987 Sep 22;231(1265):437–467. doi: 10.1098/rspb.1987.0054. [DOI] [PubMed] [Google Scholar]
  13. Mizunami M., Tateda H. Dynamic relationship between the slow potential and spikes in cockroach ocellar neurons. J Gen Physiol. 1988 May;91(5):703–723. doi: 10.1085/jgp.91.5.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mizunami M., Tateda H., Naka K. Dynamics of cockroach ocellar neurons. J Gen Physiol. 1986 Aug;88(2):275–292. doi: 10.1085/jgp.88.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mizunami M., Tateda H. Synaptic transmission between second- and third-order neurones of cockroach ocelli. J Exp Biol. 1988 Nov;140:557–561. doi: 10.1242/jeb.140.1.557. [DOI] [PubMed] [Google Scholar]
  16. Naka K. I., Chan R. Y., Yasui S. Adaptation in catfish retina. J Neurophysiol. 1979 Mar;42(2):441–454. doi: 10.1152/jn.1979.42.2.441. [DOI] [PubMed] [Google Scholar]
  17. Naka K. I., Itoh M. A., Chappell R. L. Dynamics of turtle cones. J Gen Physiol. 1987 Feb;89(2):321–337. doi: 10.1085/jgp.89.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Normann R. A., Perlman I. Signal transmission from red cones to horizontal cells in the turtle retina. J Physiol. 1979 Jan;286:509–524. doi: 10.1113/jphysiol.1979.sp012634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sakai H. M., Naka K. Signal transmission in the catfish retina. V. Sensitivity and circuit. J Neurophysiol. 1987 Dec;58(6):1329–1350. doi: 10.1152/jn.1987.58.6.1329. [DOI] [PubMed] [Google Scholar]
  20. Schiller P. H., Sandell J. H., Maunsell J. H. Functions of the ON and OFF channels of the visual system. 1986 Aug 28-Sep 3Nature. 322(6082):824–825. doi: 10.1038/322824a0. [DOI] [PubMed] [Google Scholar]
  21. Spekreijse H. Rectification in the goldfish retina: analysis by sinusoidal and auxiliary stimulation. Vision Res. 1969 Dec;9(12):1461–1472. doi: 10.1016/0042-6989(69)90062-5. [DOI] [PubMed] [Google Scholar]
  22. Stuart A. E., Oertel D. Neuronal properties underlying processing of visual information in the barnacle. Nature. 1978 Sep 28;275(5678):287–290. doi: 10.1038/275287a0. [DOI] [PubMed] [Google Scholar]
  23. Thibos L. N., Werblin F. S. The response properties of the steady antagonistic surround in the mudpuppy retina. J Physiol. 1978 May;278:79–99. doi: 10.1113/jphysiol.1978.sp012294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Toyoda J. Frequency characteristics of retinal neurons in the carp. J Gen Physiol. 1974 Feb;63(2):214–234. doi: 10.1085/jgp.63.2.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tranchina D., Gordon J., Shapley R. Spatial and temporal properties of luminosity horizontal cells in the turtle retina. J Gen Physiol. 1983 Nov;82(5):573–598. doi: 10.1085/jgp.82.5.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Victor J. D., Shapley R. M. Receptive field mechanisms of cat X and Y retinal ganglion cells. J Gen Physiol. 1979 Aug;74(2):275–298. doi: 10.1085/jgp.74.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Victor J. D. The dynamics of the cat retinal X cell centre. J Physiol. 1987 May;386:219–246. doi: 10.1113/jphysiol.1987.sp016531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Victor J. D. The dynamics of the cat retinal Y cell subunit. J Physiol. 1988 Nov;405:289–320. doi: 10.1113/jphysiol.1988.sp017334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weber G., Renner M. The ocellus of the cockroach, Periplaneta americana (Blattariae): receptory area. Cell Tissue Res. 1976 May 6;168(2):209–222. doi: 10.1007/BF00215878. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES