Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1990 Feb 1;95(2):369–392. doi: 10.1085/jgp.95.2.369

Apical membrane Na+/H+ exchange in Necturus gallbladder epithelium. Its dependence on extracellular and intracellular pH and on external Na+ concentration

PMCID: PMC2216320  PMID: 2307961

Abstract

Intracellular microelectrode techniques and extracellular pH measurements were used to study the dependence of apical Na+/H+ exchange on mucosal and intracellular pH and on mucosal solution Na+ concentration ([Na+]o). When mucosal solution pH (pHo) was decreased in gallbladders bathed in Na(+)-containing solutions, aNai fell. The effect of pHo is consistent with titration of a single site with an apparent pK of 6.29. In Na(+)-depleted tissues, increasing [Na+]o from 0 to values ranging from 2.5 to 110 mM increased aNai; the relationship was well described by Michaelis-Menten kinetics. The apparent Km was 15 mM at pHo 7.5 and increased to 134 mM at pHo 6.5, without change in Vmax. In Na(+)-depleted gallbladders, elevating [Na+]o from 0 to 25 mM increased aNai and pHi and caused acidification of a poorly buffered mucosal solution upon stopping the superfusion; lowering pHo inhibited both apical Na+ entry and mucosal solution acidification. Both effects can be ascribed to titration of a single site; the apparent pK's were 7.2 and 7.4, respectively. Diethylpyrocarbonate (DEPC), a histidine- specific reagent, reduced mucosal acidification by 58 +/- 4 or 39 +/- 6% when exposure to the drug was at pHo 7.5 or 6.5, respectively. Amiloride (1 mM) did not protect against the DEPC inhibition, but reduced both apical Na+ entry and mucosal acidification by 63 +/- 5 and 65 +/- 9%, respectively. In the Na(+)-depleted tissues mean pHi was 6.7. Cells were alkalinized by exposure to mucosal solutions containing high concentrations of nicotine or methylamine. Estimates of apical Na+ entry at varying pHi, upon increasing [Na+]o from 0 to 25 mM, indicate that Na+/H+ exchange is active at pHi 7.4. Intracellular H+ stimulated apical Na+ entry by titration of more than one site (apparent pK 7.1, Hill coefficient 1.7). The results suggest that external Na+ and H+ interact with one site of the Na+/H+ exchanger and that cytoplasmic H+ acts on at least two sites. The external titratable group seems to be an imidazolium, which is apparently different from the amiloride- binding site. The dependence of Na+ entry on pHi supports the notion that the Na+/H+ exchanger is operational under normal transport conditions.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler S. The simultaneous determination of muscle cell pH using a weak acid and weak base. J Clin Invest. 1972 Feb;51(2):256–265. doi: 10.1172/JCI106810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aronson P. S., Nee J., Suhm M. A. Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles. Nature. 1982 Sep 9;299(5879):161–163. doi: 10.1038/299161a0. [DOI] [PubMed] [Google Scholar]
  3. Aronson P. S., Suhm M. A., Nee J. Interaction of external H+ with the Na+-H+ exchanger in renal microvillus membrane vesicles. J Biol Chem. 1983 Jun 10;258(11):6767–6771. [PubMed] [Google Scholar]
  4. Baerentsen H., Giraldez F., Zeuthen T. Influx mechanisms for Na+ and Cl- across the brush border membrane of leaky epithelia: a model and microelectrode study. J Membr Biol. 1983;75(3):205–218. doi: 10.1007/BF01871951. [DOI] [PubMed] [Google Scholar]
  5. Baum M. Evidence that parallel Na+-H+ and Cl(-)-HCO3-(OH-) antiporters transport NaCl in the proximal tubule. Am J Physiol. 1987 Feb;252(2 Pt 2):F338–F345. doi: 10.1152/ajprenal.1987.252.2.F338. [DOI] [PubMed] [Google Scholar]
  6. Boron W. F., Boulpaep E. L. Intracellular pH regulation in the renal proximal tubule of the salamander. Na-H exchange. J Gen Physiol. 1983 Jan;81(1):29–52. doi: 10.1085/jgp.81.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boron W. F., De Weer P. Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J Gen Physiol. 1976 Jan;67(1):91–112. doi: 10.1085/jgp.67.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boron W. F., McCormick W. C., Roos A. pH regulation in barnacle muscle fibers: dependence on intracellular and extracellular pH. Am J Physiol. 1979 Sep;237(3):C185–C193. doi: 10.1152/ajpcell.1979.237.3.C185. [DOI] [PubMed] [Google Scholar]
  9. Boron W. F., Roos A. Comparison of microelectrode, DMO, and methylamine methods for measuring intracellular pH. Am J Physiol. 1976 Sep;231(3):799–809. doi: 10.1152/ajplegacy.1976.231.3.799. [DOI] [PubMed] [Google Scholar]
  10. Breitwieser G. E., Altamirano A. A., Russell J. M. Effects of pH changes on sodium pump fluxes in squid giant axon. Am J Physiol. 1987 Oct;253(4 Pt 1):C547–C554. doi: 10.1152/ajpcell.1987.253.4.C547. [DOI] [PubMed] [Google Scholar]
  11. Chaillet J. R., Boron W. F. Intracellular calibration of a pH-sensitive dye in isolated, perfused salamander proximal tubules. J Gen Physiol. 1985 Dec;86(6):765–794. doi: 10.1085/jgp.86.6.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cremaschi D., Hénin S. Na+ and Cl- transepithelial routes in rabbit gallbladder: tracer analysis of the transports. Pflugers Arch. 1975 Dec 19;361(1):33–41. doi: 10.1007/BF00587337. [DOI] [PubMed] [Google Scholar]
  13. Cremaschi D., Meyer G., Bermano S., Marcati M. Different sodium chloride cotransport systems in the apical membrane of rabbit gallbladder epithelial cells. J Membr Biol. 1983;73(3):227–235. doi: 10.1007/BF01870537. [DOI] [PubMed] [Google Scholar]
  14. Dagostino M., Lee C. O. Neutral carrier Na+- and Ca2+-selective microelectrodes for intracellular application. Biophys J. 1982 Dec;40(3):199–207. doi: 10.1016/S0006-3495(82)84475-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Davis C. W., Finn A. L. Effects of mucosal sodium removal on cell volume in Necturus gallbladder epithelium. Am J Physiol. 1985 Sep;249(3 Pt 1):C304–C312. doi: 10.1152/ajpcell.1985.249.3.C304. [DOI] [PubMed] [Google Scholar]
  16. Eaton D. C., Hamilton K. L., Johnson K. E. Intracellular acidosis blocks the basolateral Na-K pump in rabbit urinary bladder. Am J Physiol. 1984 Dec;247(6 Pt 2):F946–F954. doi: 10.1152/ajprenal.1984.247.6.F946. [DOI] [PubMed] [Google Scholar]
  17. Ehrenfeld J., Cragoe E. J., Jr, Harvey B. J. Evidence for a Na+/H+ exchanger at the basolateral membranes of the isolated frog skin epithelium: effect of amiloride analogues. Pflugers Arch. 1987 Jun;409(1-2):200–207. doi: 10.1007/BF00584772. [DOI] [PubMed] [Google Scholar]
  18. Ericson A. C., Spring K. R. Coupled NaCl entry into Necturus gallbladder epithelial cells. Am J Physiol. 1982 Sep;243(3):C140–C145. doi: 10.1152/ajpcell.1982.243.3.C140. [DOI] [PubMed] [Google Scholar]
  19. Friedman P. A., Andreoli T. E. CO2-stimulated NaCl absorption in the mouse renal cortical thick ascending limb of Henle. Evidence for synchronous Na +/H+ and Cl-/HCO3- exchange in apical plasma membranes. J Gen Physiol. 1982 Nov;80(5):683–711. doi: 10.1085/jgp.80.5.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Graf J., Giebisch G. Intracellular sodium activity and sodium transport in necturus gallbladder epithelium. J Membr Biol. 1979 Jun 7;47(4):327–355. doi: 10.1007/BF01869743. [DOI] [PubMed] [Google Scholar]
  21. Green J., Yamaguchi D. T., Kleeman C. R., Muallem S. Cytosolic pH regulation in osteoblasts. Interaction of Na+ and H+ with the extracellular and intracellular faces of the Na+/H+ exchanger. J Gen Physiol. 1988 Aug;92(2):239–261. doi: 10.1085/jgp.92.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Grillo F. G., Aronson P. S. Inactivation of the renal microvillus membrane Na+-H+ exchanger by histidine-specific reagents. J Biol Chem. 1986 Jan 25;261(3):1120–1125. [PubMed] [Google Scholar]
  23. Grinstein S., Cohen S., Rothstein A. Cytoplasmic pH regulation in thymic lymphocytes by an amiloride-sensitive Na+/H+ antiport. J Gen Physiol. 1984 Mar;83(3):341–369. doi: 10.1085/jgp.83.3.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Harvey B. J., Ehrenfeld J. Role of Na+/H+ exchange in the control of intracellular pH and cell membrane conductances in frog skin epithelium. J Gen Physiol. 1988 Dec;92(6):793–810. doi: 10.1085/jgp.92.6.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hesketh T. R., Moore J. P., Morris J. D., Taylor M. V., Rogers J., Smith G. A., Metcalfe J. C. A common sequence of calcium and pH signals in the mitogenic stimulation of eukaryotic cells. Nature. 1985 Feb 7;313(6002):481–484. doi: 10.1038/313481a0. [DOI] [PubMed] [Google Scholar]
  26. Ives H. E., Yee V. J., Warnock D. G. Mixed type inhibition of the renal Na+/H+ antiporter by Li+ and amiloride. Evidence for a modifier site. J Biol Chem. 1983 Aug 25;258(16):9710–9716. [PubMed] [Google Scholar]
  27. Jean T., Frelin C., Vigne P., Barbry P., Lazdunski M. Biochemical properties of the Na+/H+ exchange system in rat brain synaptosomes. Interdependence of internal and external pH control of the exchange activity. J Biol Chem. 1985 Aug 15;260(17):9678–9684. [PubMed] [Google Scholar]
  28. Karniski L. P., Aronson P. S. Chloride/formate exchange with formic acid recycling: a mechanism of active chloride transport across epithelial membranes. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6362–6365. doi: 10.1073/pnas.82.18.6362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kinsella J. L., Aronson P. S. Interaction of NH4+ and Li+ with the renal microvillus membrane Na+-H+ exchanger. Am J Physiol. 1981 Nov;241(5):C220–C226. doi: 10.1152/ajpcell.1981.241.5.C220. [DOI] [PubMed] [Google Scholar]
  30. Kinsella J. L., Aronson P. S. Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol. 1980 Jun;238(6):F461–F469. doi: 10.1152/ajprenal.1980.238.6.F461. [DOI] [PubMed] [Google Scholar]
  31. LEAF A., KELLER A., DEMPSEY E. F. STIMULATION OF SODIUM TRANSPORT IN TOAD BLADDER BY ACIDIFICATION OF MUCOSAL MEDIUM. Am J Physiol. 1964 Sep;207:547–552. doi: 10.1152/ajplegacy.1964.207.3.547. [DOI] [PubMed] [Google Scholar]
  32. Larson M., Spring K. R. Bumetanide inhibition of NaCl transport by Necturus gallbladder. J Membr Biol. 1983;74(2):123–129. doi: 10.1007/BF01870501. [DOI] [PubMed] [Google Scholar]
  33. Miles E. W. Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol. 1977;47:431–442. doi: 10.1016/0076-6879(77)47043-5. [DOI] [PubMed] [Google Scholar]
  34. Miller R. T., Pollock A. S. Modification of the internal pH sensitivity of the Na+/H+ antiporter by parathyroid hormone in a cultured renal cell line. J Biol Chem. 1987 Jul 5;262(19):9115–9120. [PubMed] [Google Scholar]
  35. Muldoon L. L., Dinerstein R. J., Villereal M. L. Intracellular pH in human fibroblasts: effect of mitogens, A23187, and phospholipase activation. Am J Physiol. 1985 Jul;249(1 Pt 1):C140–C148. doi: 10.1152/ajpcell.1985.249.1.C140. [DOI] [PubMed] [Google Scholar]
  36. Oberleithner H., Lang F., Wang W., Messner G., Deetjen P. Evidence for an amiloride sensitive Na+ pathway in the amphibian diluting segment induced by K+ adaptation. Pflugers Arch. 1983 Nov;399(3):166–172. doi: 10.1007/BF00656710. [DOI] [PubMed] [Google Scholar]
  37. Paris S., Pouysségur J. Biochemical characterization of the amiloride-sensitive Na+/H+ antiport in Chinese hamster lung fibroblasts. J Biol Chem. 1983 Mar 25;258(6):3503–3508. [PubMed] [Google Scholar]
  38. Park C. S., Fanestil D. D. Functional groups of the Na+ channel: role of carboxyl and histidyl groups. Am J Physiol. 1983 Dec;245(6):F716–F725. doi: 10.1152/ajprenal.1983.245.6.F716. [DOI] [PubMed] [Google Scholar]
  39. Preisig P. A., Rector F. C., Jr Role of Na+-H+ antiport in rat proximal tubule NaCl absorption. Am J Physiol. 1988 Sep;255(3 Pt 2):F461–F465. doi: 10.1152/ajprenal.1988.255.3.F461. [DOI] [PubMed] [Google Scholar]
  40. Renner E. L., Lake J. R., Persico M., Scharschmidt B. F. Na+-H+ exchange activity in rat hepatocytes: role in regulation of intracellular pH. Am J Physiol. 1989 Jan;256(1 Pt 1):G44–G52. doi: 10.1152/ajpgi.1989.256.1.G44. [DOI] [PubMed] [Google Scholar]
  41. Reuss L., Cheung L. Y., Grady T. P. Mechanisms of cation permeation across apical cell membrane of Necturus gallbladder: effects of luminal pH and divalent cations on K+ and Na+ permeability. J Membr Biol. 1981 Apr 30;59(3):211–224. doi: 10.1007/BF01875426. [DOI] [PubMed] [Google Scholar]
  42. Reuss L., Costantin J. L., Bazile J. E. Diphenylamine-2-carboxylate blocks Cl(-)-HCO3- exchange in Necturus gallbladder epithelium. Am J Physiol. 1987 Jul;253(1 Pt 1):C79–C89. doi: 10.1152/ajpcell.1987.253.1.C79. [DOI] [PubMed] [Google Scholar]
  43. Reuss L., Costantin J. L. Cl-/HCO3- exchange at the apical membrane of Necturus gallbladder. J Gen Physiol. 1984 Jun;83(6):801–818. doi: 10.1085/jgp.83.6.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Reuss L., Finn A. L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. I. Circuit analysis and steady-state effects of mucosal solution ionic substitutions. J Membr Biol. 1975 Dec 4;25(1-2):115–139. doi: 10.1007/BF01868571. [DOI] [PubMed] [Google Scholar]
  45. Reuss L., Finn A. L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. II. Ionic permeability of the apical cell membrane. J Membr Biol. 1975 Dec 4;25(1-2):141–161. doi: 10.1007/BF01868572. [DOI] [PubMed] [Google Scholar]
  46. Reuss L. Independence of apical membrane Na+ and Cl- entry in Necturus gallbladder epithelium. J Gen Physiol. 1984 Sep;84(3):423–445. doi: 10.1085/jgp.84.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Reuss L. Ion transport across gallbladder epithelium. Physiol Rev. 1989 Apr;69(2):503–545. doi: 10.1152/physrev.1989.69.2.503. [DOI] [PubMed] [Google Scholar]
  48. Reuss L., Petersen K. U. Cyclic AMP inhibits Na+/H+ exchange at the apical membrane of Necturus gallbladder epithelium. J Gen Physiol. 1985 Mar;85(3):409–429. doi: 10.1085/jgp.85.3.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Reuss L. Potassium transport mechanisms by amphibian gallbladder. Soc Gen Physiol Ser. 1981;36:109–128. [PubMed] [Google Scholar]
  50. Reuss L., Reinach P., Weinman S. A., Grady T. P. Intracellular ion activities and Cl-transport mechanisms in bullfrog corneal epithelium. Am J Physiol. 1983 May;244(5):C336–C347. doi: 10.1152/ajpcell.1983.244.5.C336. [DOI] [PubMed] [Google Scholar]
  51. Reuss L., Stoddard J. S. Role of H+ and HCO3- in salt transport in gallbladder epithelium. Annu Rev Physiol. 1987;49:35–49. doi: 10.1146/annurev.ph.49.030187.000343. [DOI] [PubMed] [Google Scholar]
  52. Roberts M. L., Iwatsuki N., Petersen O. H. Parotid acinar cells: ionic dependence of acetylcholine-evoked membrane potential changes. Pflugers Arch. 1978 Sep 6;376(2):159–167. doi: 10.1007/BF00581579. [DOI] [PubMed] [Google Scholar]
  53. Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
  54. Simchowitz L., Roos A. Regulation of intracellular pH in human neutrophils. J Gen Physiol. 1985 Mar;85(3):443–470. doi: 10.1085/jgp.85.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Smith J. B., Rozengurt E. Serum stimulates the Na+,K+ pump in quiescent fibroblasts by increasing Na+ entry. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5560–5564. doi: 10.1073/pnas.75.11.5560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Stoddard J. S., Reuss L. pH effects on basolateral membrane ion conductances in gallbladder epithelium. Am J Physiol. 1989 Jun;256(6 Pt 1):C1184–C1195. doi: 10.1152/ajpcell.1989.256.6.C1184. [DOI] [PubMed] [Google Scholar]
  57. Vigne P., Frelin C., Lazdunski M. The amiloride-sensitive Na+/H+ exchange system in skeletal muscle cells in culture. J Biol Chem. 1982 Aug 25;257(16):9394–9400. [PubMed] [Google Scholar]
  58. Weinman S. A., Reuss L. Na+-H+ exchange and Na+ entry across the apical membrane of Necturus gallbladder. J Gen Physiol. 1984 Jan;83(1):57–74. doi: 10.1085/jgp.83.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Weinman S. A., Reuss L. Na+-H+ exchange at the apical membrane of Necturus gallbladder. Extracellular and intracellular pH studies. J Gen Physiol. 1982 Aug;80(2):299–321. doi: 10.1085/jgp.80.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. van Os C. H., Slegers J. F. The electrical potential profile of gallbladder epithelium. J Membr Biol. 1975 Dec 4;24(3-4):341–363. doi: 10.1007/BF01868631. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES