Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of General Physiology logoLink to The Journal of General Physiology
. 1990 Mar 1;95(3):545–567. doi: 10.1085/jgp.95.3.545

Regulation by light of cyclic nucleotide-dependent protein kinases and their substrates in frog rod outer segments

PMCID: PMC2216325  PMID: 2157794

Abstract

Cyclic nucleotides (both cAMP and cGMP) stimulate the phosphorylation of several proteins of 65-70, 50-52, 21, 13, and 12 kD in rod outer segments (ROS) of the frog retina. Subcellular fractionation showed that phosphopeptides of 67, 21, 13, and 12 kD were soluble and phosphopeptides of 69, 67, 50-52, and 12 kD were membrane associated at physiological ionic strength. Components I and II, 13 and 12 kD, respectively, are the major cyclic nucleotide-dependent phosphoproteins of ROS and have been reported to be phosphorylated in the dark and dephosphorylated in the light. Under unstimulated conditions, phosphorylated Components I and II were found in the soluble fraction. Cyclic nucleotide stimulation of phosphorylation resulted in increased phospho-Components I and II in the soluble fraction, and phospho- Component II on the membrane. Light had no effect on the phosphorylation level of soluble Components I and II, but it caused a depletion within 1 s of the membrane-bound phospho-Component II. A half- maximal decrease in membrane-bound Component II was seen at 5 x 10(5) rhodopsins bleached per outer segment. The cyclic nucleotide-dependent protein kinase(s) were found primarily in the peripheral membrane fraction of ROS proteins. 8-bromo cyclic AMP was two orders of magnitude more effective than 8-bromo cyclic GMP at stimulating Component I and II phosphorylation. An active peptide of the Walsh inhibitor of cAMP-dependent protein kinase [PKI(5-22)amide] blocked the phosphorylation with an IC50 of 10 nM. Photoaffinity labeling studies with 8-N3-cAMP and 8-N3-cGMP revealed the presence of a 52-kD band specifically labeled with 8-N3-cAMP, but no specific 8-N3-cGMP labeling. These data suggest that cyclic nucleotide-dependent protein phosphorylation in ROS occurs via the activation of a cAMP-dependent protein kinase.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Besharse J. C., Dunis D. A., Burnside B. Effects of cyclic adenosine 3',5'-monophosphate on photoreceptor disc shedding and retinomotor movement. Inhibition of rod shedding and stimulation of cone elongation. J Gen Physiol. 1982 May;79(5):775–790. doi: 10.1085/jgp.79.5.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Binder B. M., Brewer E., Bownds M. D. Stimulation of protein phosphorylations in frog rod outer segments by protein kinase activators. Suppression of light-induced changes in membrane current and cGMP by protein kinase C activators. J Biol Chem. 1989 May 25;264(15):8857–8864. [PubMed] [Google Scholar]
  3. Blazynski C., Cohen A. I. Cyclic nucleotide distribution in identified layers of suprafused rabbit retinas. Exp Eye Res. 1984 Mar;38(3):279–290. doi: 10.1016/0014-4835(84)90166-0. [DOI] [PubMed] [Google Scholar]
  4. Blazynski C., Cohen A. I. Rapid declines in cyclic GMP of rod outer segments of intact frog photoreceptors after illumination. J Biol Chem. 1986 Oct 25;261(30):14142–14147. [PubMed] [Google Scholar]
  5. Blazynski C., Kinscherf D. A., Geary K. M., Ferrendelli J. A. Adenosine-mediated regulation of cyclic AMP levels in isolated incubated retinas. Brain Res. 1986 Feb 26;366(1-2):224–229. doi: 10.1016/0006-8993(86)91299-0. [DOI] [PubMed] [Google Scholar]
  6. Brann M. R., Jelsema C. L. Dopamine receptors on photoreceptor membranes couple to a GTP-binding protein which is sensitive to both pertussis and cholera toxin. Biochem Biophys Res Commun. 1985 Nov 27;133(1):222–227. doi: 10.1016/0006-291x(85)91864-9. [DOI] [PubMed] [Google Scholar]
  7. Brann M. R., Young W. S., 3rd Dopamine receptors are located on rods in bovine retina. Neurosci Lett. 1986 Sep 12;69(3):221–226. doi: 10.1016/0304-3940(86)90483-0. [DOI] [PubMed] [Google Scholar]
  8. Brodie A. E., Bownds D. Biochemical correlates of adaptation processes in isolated frog photoreceptor membranes. J Gen Physiol. 1976 Jul;68(1):1–11. doi: 10.1085/jgp.68.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Burnside B., Evans M., Fletcher R. T., Chader G. J. Induction of dark-adaptive retinomotor movement (cell elongation) in teleost retinal cones by cyclic adenosine 3','5-monophosphate. J Gen Physiol. 1982 May;79(5):759–774. doi: 10.1085/jgp.79.5.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Caretta A., Cavaggioni A., Sorbi R. T. Binding stoichiometry of a fluorescent cGMP analogue to membranes of retinal rod outer segments. Eur J Biochem. 1985 Nov 15;153(1):49–53. doi: 10.1111/j.1432-1033.1985.tb09265.x. [DOI] [PubMed] [Google Scholar]
  11. Cheng H. C., Kemp B. E., Pearson R. B., Smith A. J., Misconi L., Van Patten S. M., Walsh D. A. A potent synthetic peptide inhibitor of the cAMP-dependent protein kinase. J Biol Chem. 1986 Jan 25;261(3):989–992. [PubMed] [Google Scholar]
  12. Cohen A. I., Blazynski C. Tryptamine and some related molecules block the accumulation of a light-sensitive pool of cyclic AMP in the dark-adapted, dark-incubated mouse retina. J Neurochem. 1987 Mar;48(3):729–737. doi: 10.1111/j.1471-4159.1987.tb05577.x. [DOI] [PubMed] [Google Scholar]
  13. Cohen A. I. Increased levels of 3',5'-cyclic adenosine monophosphate induced by cobaltous ion or 3-isobutylmethylxanthine in the incubated mouse retina: evidence concerning location and response to ions and light. J Neurochem. 1982 Mar;38(3):781–796. doi: 10.1111/j.1471-4159.1982.tb08699.x. [DOI] [PubMed] [Google Scholar]
  14. Corbin J. D., Ogreid D., Miller J. P., Suva R. H., Jastorff B., Døskeland S. O. Studies of cGMP analog specificity and function of the two intrasubunit binding sites of cGMP-dependent protein kinase. J Biol Chem. 1986 Jan 25;261(3):1208–1214. [PubMed] [Google Scholar]
  15. Cote R. H., Biernbaum M. S., Nicol G. D., Bownds M. D. Light-induced decreases in cGMP concentration precede changes in membrane permeability in frog rod photoreceptors. J Biol Chem. 1984 Aug 10;259(15):9635–9641. [PubMed] [Google Scholar]
  16. De Vries G. W., Campau K. M., Ferrendelli J. A. Adenylate cyclases in the vertebrate retina: distribution and characteristics in rabbit and ground squirrel. J Neurochem. 1982 Mar;38(3):759–765. doi: 10.1111/j.1471-4159.1982.tb08696.x. [DOI] [PubMed] [Google Scholar]
  17. DeVries G. W., Cohen A. I., Hall I. A., Ferrendelli J. A. Cyclic nucleotide levels in normal and biologically fractionated mouse retina: effects of light and dark adaptation. J Neurochem. 1978 Dec;31(6):1345–1351. doi: 10.1111/j.1471-4159.1978.tb06559.x. [DOI] [PubMed] [Google Scholar]
  18. Dearry A., Burnside B. Dopamine inhibits forskolin- and 3-isobutyl-1-methylxanthine-induced dark-adaptive retinomotor movements in isolated teleost retinas. J Neurochem. 1985 Jun;44(6):1753–1763. doi: 10.1111/j.1471-4159.1985.tb07165.x. [DOI] [PubMed] [Google Scholar]
  19. Deterre P., Bigay J., Robert M., Pfister C., Kühn H., Chabre M. Activation of retinal rod cyclic GMP-phosphodiesterase by transducin: characterization of the complex formed by phosphodiesterase inhibitor and transducin alpha-subunit. Proteins. 1986 Oct;1(2):188–193. doi: 10.1002/prot.340010210. [DOI] [PubMed] [Google Scholar]
  20. Farber D. B., Brown B. M., Lllley R. N. Cyclic nucleotide dependent protein kinase and the phosphorylation of endogenous proteins of retinal rod outer segments. Biochemistry. 1979 Jan 23;18(2):370–378. doi: 10.1021/bi00569a022. [DOI] [PubMed] [Google Scholar]
  21. Farber D. B. Proposed role of phosphoproteins in visual function. Prog Brain Res. 1982;56:435–445. doi: 10.1016/S0079-6123(08)63789-9. [DOI] [PubMed] [Google Scholar]
  22. Ferrendelli J. A., Cohen A. I. The effects of light and dark adaptation on the levels of cyclic nucleotides in retinas of mice heterozygous for a gene for photoreceptor dystrophy. Biochem Biophys Res Commun. 1976 Nov 22;73(2):421–427. doi: 10.1016/0006-291x(76)90724-5. [DOI] [PubMed] [Google Scholar]
  23. Ferrendelli J. A., De Vries G. W. Cyclic GMP systems in the retina. Fed Proc. 1983 Nov;42(14):3103–3106. [PubMed] [Google Scholar]
  24. Fesenko E. E., Kolesnikov S. S., Lyubarsky A. L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature. 1985 Jan 24;313(6000):310–313. doi: 10.1038/313310a0. [DOI] [PubMed] [Google Scholar]
  25. Filatov G. N., Jainazarov A. B., Kolesnikov S. S., Lyubarsky A. L., Fesenko E. E. The effect of ATP, GTP and cAMP on the cGMP-dependent conductance of the fragments from frog rod plasma membrane. FEBS Lett. 1989 Mar 13;245(1-2):185–188. doi: 10.1016/0014-5793(89)80218-2. [DOI] [PubMed] [Google Scholar]
  26. Fung B. K., Hurley J. B., Stryer L. Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc Natl Acad Sci U S A. 1981 Jan;78(1):152–156. doi: 10.1073/pnas.78.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Godchaux W., 3rd, Zimmerman W. F. Membrane-dependent guanine nucleotide binding and GTPase activities of soluble protein from bovine rod cell outer segments. J Biol Chem. 1979 Aug 25;254(16):7874–7884. [PubMed] [Google Scholar]
  28. Hamm H. E., Bownds M. D. A monoclonal antibody to guanine nucleotide binding protein inhibits the light-activated cyclic GMP pathway in frog rod outer segments. J Gen Physiol. 1984 Aug;84(2):265–280. doi: 10.1085/jgp.84.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hamm H. E., Bownds M. D. Protein complement of rod outer segments of frog retina. Biochemistry. 1986 Aug 12;25(16):4512–4523. doi: 10.1021/bi00364a010. [DOI] [PubMed] [Google Scholar]
  30. Hayashi F., Sumi M., Amakawa T. Phosphatidylinositol stimulates phosphorylation of protein components I and II in rod outer segments of frog photoreceptors. Biochem Biophys Res Commun. 1987 Oct 14;148(1):54–60. doi: 10.1016/0006-291x(87)91075-8. [DOI] [PubMed] [Google Scholar]
  31. Hermolin J., Karell M. A., Hamm H. E., Bownds M. D. Calcium and cyclic GMP regulation of light-sensitive protein phosphorylation in frog photoreceptor membranes. J Gen Physiol. 1982 Apr;79(4):633–655. doi: 10.1085/jgp.79.4.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Hirota K., Hirota T., Aguilera G., Catt K. J. Hormone-induced redistribution of calcium-activated phospholipid-dependent protein kinase in pituitary gonadotrophs. J Biol Chem. 1985 Mar 25;260(6):3243–3246. [PubMed] [Google Scholar]
  33. Hurley J. B., Stryer L. Purification and characterization of the gamma regulatory subunit of the cyclic GMP phosphodiesterase from retinal rod outer segments. J Biol Chem. 1982 Sep 25;257(18):11094–11099. [PubMed] [Google Scholar]
  34. Keely S. L., Jr, Corbin J. D., Park C. R. On the question of translocation of heart cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1501–1504. doi: 10.1073/pnas.72.4.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Koch K. W., Kaupp U. B. Cyclic GMP directly regulates a cation conductance in membranes of bovine rods by a cooperative mechanism. J Biol Chem. 1985 Jun 10;260(11):6788–6800. [PubMed] [Google Scholar]
  36. Krapivinskii G. B., Malenev A. L., Fesenko E. E. Molekuliarnye mekhanizmy fotoretseptsii. VI. Tsiklonukleotid- i svetozavisimoe fosforilirovanie belkov naruzhnykh segmentov palochek iz setchatki liagushki. Mol Biol (Mosk) 1987 Jan-Feb;21(1):116–124. [PubMed] [Google Scholar]
  37. Kwok-Keung Fung B., Stryer L. Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments. Proc Natl Acad Sci U S A. 1980 May;77(5):2500–2504. doi: 10.1073/pnas.77.5.2500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kühn H. Light- and GTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes. Nature. 1980 Feb 7;283(5747):587–589. doi: 10.1038/283587a0. [DOI] [PubMed] [Google Scholar]
  39. Lee R. H., Brown B. M., Lolley R. N. Light-induced dephosphorylation of a 33K protein in rod outer segments of rat retina. Biochemistry. 1984 Apr 24;23(9):1972–1977. doi: 10.1021/bi00304a014. [DOI] [PubMed] [Google Scholar]
  40. Lee R. H., Brown B. M., Lolley R. N. Protein kinases of retinal rod outer segments: identification and partial characterization of cyclic nucleotide dependent protein kinase and rhodopsin kinase. Biochemistry. 1981 Dec 22;20(26):7532–7538. doi: 10.1021/bi00529a031. [DOI] [PubMed] [Google Scholar]
  41. Lee R. H., Lieberman B. S., Lolley R. N. A novel complex from bovine visual cells of a 33,000-dalton phosphoprotein with beta- and gamma-transducin: purification and subunit structure. Biochemistry. 1987 Jun 30;26(13):3983–3990. doi: 10.1021/bi00387a036. [DOI] [PubMed] [Google Scholar]
  42. Lee R. H., Whelan J. P., Lolley R. N., McGinnis J. F. The photoreceptor-specific 33 kDa phosphoprotein of mammalian retina: generation of monospecific antibodies and localization by immunocytochemistry. Exp Eye Res. 1988 Jun;46(6):829–840. doi: 10.1016/s0014-4835(88)80035-6. [DOI] [PubMed] [Google Scholar]
  43. Liebman P. A., Parker K. R., Dratz E. A. The molecular mechanism of visual excitation and its relation to the structure and composition of the rod outer segment. Annu Rev Physiol. 1987;49:765–791. doi: 10.1146/annurev.ph.49.030187.004001. [DOI] [PubMed] [Google Scholar]
  44. Liebman P. A., Pugh E. N., Jr ATP mediates rapid reversal of cyclic GMP phosphodiesterase activation in visual receptor membranes. Nature. 1980 Oct 23;287(5784):734–736. doi: 10.1038/287734a0. [DOI] [PubMed] [Google Scholar]
  45. Lincoln T. M., Dills W. L., Jr, Corbin J. D. Purification and subunit composition of guanosine 3':5'-monophosphate-dependent protein kinase from bovine lung. J Biol Chem. 1977 Jun 25;252(12):4269–4275. [PubMed] [Google Scholar]
  46. Nakatani K., Yau K. W. Guanosine 3',5'-cyclic monophosphate-activated conductance studied in a truncated rod outer segment of the toad. J Physiol. 1988 Jan;395:731–753. doi: 10.1113/jphysiol.1988.sp016943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Orr H. T., Lowry O. H., Cohen A. I., Ferrendelli J. A. Distribution of 3':5'-cyclic AMP and 3':5'-cyclic GMP in rabbit retina in vivo: selective effects of dark and light adaptation and ischemia. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4442–4445. doi: 10.1073/pnas.73.12.4442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Pierce M. E., Besharse J. C. Circadian regulation of retinomotor movements. I. Interaction of melatonin and dopamine in the control of cone length. J Gen Physiol. 1985 Nov;86(5):671–689. doi: 10.1085/jgp.86.5.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Plouët J., Mascarelli F., Loret M. D., Faure J. P., Courtois Y. Regulation of eye derived growth factor binding to membranes by light, ATP or GTP in photoreceptor outer segments. EMBO J. 1988 Feb;7(2):373–376. doi: 10.1002/j.1460-2075.1988.tb02823.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Polans A. S., Hermolin J., Bownds M. D. Light-induced dephosphorylation of two proteins in frog rod outer segments: influence of cyclic nucleotides and calcium. J Gen Physiol. 1979 Nov;74(5):595–613. doi: 10.1085/jgp.74.5.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Robinson P. R., Radeke M. J., Cote R. H., Bownds M. D. cGMP influences guanine nucleotide binding to frog photoreceptor G-protein. J Biol Chem. 1986 Jan 5;261(1):313–318. [PubMed] [Google Scholar]
  52. Saitoh T., Schwartz J. H. Serotonin alters the subcellular distribution of a Ca2+/calmodulin-binding protein in neurons of Aplysia. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6708–6712. doi: 10.1073/pnas.80.21.6708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Shinozawa T., Yoshizawa T. Cyclic nucleotide-dependent phosphorylation of proteins in rod outer segments in frog retina. Characteristics of the phosphorylated proteins and their dephosphorylation. J Biol Chem. 1986 Jan 5;261(1):216–223. [PubMed] [Google Scholar]
  54. Sitaramayya A., Liebman P. A. Mechanism of ATP quench of phosphodiesterase activation in rod disc membranes. J Biol Chem. 1983 Jan 25;258(2):1205–1209. [PubMed] [Google Scholar]
  55. Sitaramayya A. Rhodopsin kinase prepared from bovine rod disk membranes quenches light activation of cGMP phosphodiesterase in a reconstituted system. Biochemistry. 1986 Sep 23;25(19):5460–5468. doi: 10.1021/bi00367a017. [DOI] [PubMed] [Google Scholar]
  56. Stern J. H., Kaupp U. B., MacLeish P. R. Control of the light-regulated current in rod photoreceptors by cyclic GMP, calcium, and l-cis-diltiazem. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1163–1167. doi: 10.1073/pnas.83.4.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Takio K., Wade R. D., Smith S. B., Krebs E. G., Walsh K. A., Titani K. Guanosine cyclic 3',5'-phosphate dependent protein kinase, a chimeric protein homologous with two separate protein families. Biochemistry. 1984 Aug 28;23(18):4207–4218. doi: 10.1021/bi00313a030. [DOI] [PubMed] [Google Scholar]
  58. Walter U., Greengard P. Cyclic AMP-dependent and cyclic GMP-dependent protein kinases of nervous tissue. Curr Top Cell Regul. 1981;19:219–256. doi: 10.1016/b978-0-12-152819-5.50023-3. [DOI] [PubMed] [Google Scholar]
  59. Woodruff M. L., Bownds D., Green S. H., Morrisey J. L., Shedlovsky A. Guanosine 3',5'-cyclic monophosphate and the in vitro physiology of frog photoreceptor membranes. J Gen Physiol. 1977 May;69(5):667–679. doi: 10.1085/jgp.69.5.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Woodruff M. L., Bownds M. D. Amplitude, kinetics, and reversibility of a light-induced decrease in guanosine 3',5'-cyclic monophosphate in frog photoreceptor membranes. J Gen Physiol. 1979 May;73(5):629–653. doi: 10.1085/jgp.73.5.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Yamazaki A., Sen I., Bitensky M. W., Casnellie J. E., Greengard P. Cyclic GMP-specific, high affinity, noncatalytic binding sites on light-activated phosphodiesterase. J Biol Chem. 1980 Dec 10;255(23):11619–11624. [PubMed] [Google Scholar]
  62. Yau K. W., Nakatani K. Light-suppressible, cyclic GMP-sensitive conductance in the plasma membrane of a truncated rod outer segment. Nature. 1985 Sep 19;317(6034):252–255. doi: 10.1038/317252a0. [DOI] [PubMed] [Google Scholar]
  63. Zick Y., Spiegel A. M., Sagi-Eisenberg R. Insulin-like growth factor I receptors in retinal rod outer segments. J Biol Chem. 1987 Jul 25;262(21):10259–10264. [PubMed] [Google Scholar]
  64. Zimmerman A. L., Yamanaka G., Eckstein F., Baylor D. A., Stryer L. Interaction of hydrolysis-resistant analogs of cyclic GMP with the phosphodiesterase and light-sensitive channel of retinal rod outer segments. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8813–8817. doi: 10.1073/pnas.82.24.8813. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES