Abstract
Blocker-induced noise analysis of apical membrane Na channels of epithelia of frog skin was carried out with the electroneutral blocker (CDPC, 6-chloro-3,5-diamino-pyrazine-2-carboxamide) that permitted determination of the changes of single-channel Na currents and channel densities with minimal inhibition of the macroscopic rates of Na transport (Baxendale, L. M., and S. I. Helman. 1986. Biophys. J. 49:160a). Experiments were designed to resolve changes of channel densities due to mass law action (and hence the kinetic scheme of blocker interaction with the Na channel) and to autoregulation of Na channel densities that occur as a consequence of inhibition of Na transport. Mass law action changes of channel densities conformed to a kinetic scheme of closed, open, and blocked states where blocker interacts predominantly if not solely with open channels. Such behavior was best observed in "pulse" protocol experiments that minimized the time of exposure to blocker and thus minimized the contribution of much longer time constant autoregulatory influences on channel densities. Analysis of data derived from pulse, staircase, and other experimental protocols using both CDPC and amiloride as noise-inducing blockers and interpreted within the context of a three-state model revealed that Na channel open probability in the absence of blocker averaged near 0.5 with a wide range among tissues between 0.1 and 0.9.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abramcheck F. J., Van Driessche W., Helman S. I. Autoregulation of apical membrane Na+ permeability of tight epithelia. Noise analysis with amiloride and CGS 4270. J Gen Physiol. 1985 Apr;85(4):555–582. doi: 10.1085/jgp.85.4.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eaton D. C., Hamilton K. L. The amiloride-blockable sodium channel of epithelial tissue. Ion Channels. 1988;1:251–282. doi: 10.1007/978-1-4615-7302-9_7. [DOI] [PubMed] [Google Scholar]
- Helman S. I., Cox T. C., Van Driessche W. Hormonal control of apical membrane Na transport in epithelia. Studies with fluctuation analysis. J Gen Physiol. 1983 Aug;82(2):201–220. doi: 10.1085/jgp.82.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helman S. I., Fisher R. S. Microelectrode studies of the active Na transport pathway of frog skin. J Gen Physiol. 1977 May;69(5):571–604. doi: 10.1085/jgp.69.5.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ilani A., Yachin S., Lichtstein D. Comparison between bretylium and diphenylhydantoin interaction with mucosal sodium-channels. Biochim Biophys Acta. 1984 Nov 7;777(2):323–330. doi: 10.1016/0005-2736(84)90434-6. [DOI] [PubMed] [Google Scholar]
- Li J. H., Cragoe E. J., Jr, Lindemann B. Structure-activity relationship of amiloride analogs as blockers of epithelial Na channels: I. Pyrazine-ring modifications. J Membr Biol. 1985;83(1-2):45–56. doi: 10.1007/BF01868737. [DOI] [PubMed] [Google Scholar]
- Li J. H., Cragoe E. J., Jr, Lindemann B. Structure-activity relationship of amiloride analogs as blockers of epithelial Na channels: II. Side-chain modifications. J Membr Biol. 1987;95(2):171–185. doi: 10.1007/BF01869162. [DOI] [PubMed] [Google Scholar]
- Li J. H., Lindemann B. Competitive blocking of epithelial sodium channels by organic cations: the relationship between macroscopic and microscopic inhibition constants. J Membr Biol. 1983;76(3):235–251. doi: 10.1007/BF01870366. [DOI] [PubMed] [Google Scholar]
- Palmer L. G., Frindt G. Amiloride-sensitive Na channels from the apical membrane of the rat cortical collecting tubule. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2767–2770. doi: 10.1073/pnas.83.8.2767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer L. G. Voltage-dependent block by amiloride and other monovalent cations of apical Na channels in the toad urinary bladder. J Membr Biol. 1984;80(2):153–165. doi: 10.1007/BF01868771. [DOI] [PubMed] [Google Scholar]
- Rick R., Dörge A., von Arnim E., Thurau K. Electron microprobe analysis of frog skin epithelium: evidence for a syncytial sodium transport compartment. J Membr Biol. 1978 Mar 20;39(4):313–331. doi: 10.1007/BF01869897. [DOI] [PubMed] [Google Scholar]
- Sariban-Sohraby S., Latorre R., Burg M., Olans L., Benos D. Amiloride-sensitive epithelial Na+ channels reconstituted into planar lipid bilayer membranes. Nature. 1984 Mar 1;308(5954):80–82. doi: 10.1038/308080a0. [DOI] [PubMed] [Google Scholar]
- Stoddard J. S., Helman S. I. Dependence of intracellular Na+ concentration on apical and basolateral membrane Na+ influx in frog skin. Am J Physiol. 1985 Nov;249(5 Pt 2):F662–F671. doi: 10.1152/ajprenal.1985.249.5.F662. [DOI] [PubMed] [Google Scholar]
- Van Driessche W., Zeiske W. Ba2+-induced conductance fluctuations of spontaneously fluctuating K+ channels in the apical membrane of frog skin (Rana temporaria). J Membr Biol. 1980 Aug 21;56(1):31–42. doi: 10.1007/BF01869349. [DOI] [PubMed] [Google Scholar]
- Warncke J., Lindemann B. Voltage dependence of Na channel blockage by amiloride: relaxation effects in admittance spectra. J Membr Biol. 1985;86(3):255–265. doi: 10.1007/BF01870605. [DOI] [PubMed] [Google Scholar]