Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1990 May 1;95(5):773–789. doi: 10.1085/jgp.95.5.773

Effects of insulin and phosphatase on a Ca2(+)-dependent Cl- channel in a distal nephron cell line (A6)

PMCID: PMC2216341  PMID: 2163430

Abstract

A Cl- channel with a small single-channel conductance (3 pS) was observed in cell-attached patches formed on the apical membrane of cells from the distal nephron cell line (A6) cultured on permeable supports. The current-voltage (I-V) relationship from cell-attached patches or inside-out patches with 1 microM cytosolic Ca2+ strongly rectified with no inward current at potentials more negative than ECl. However, the rectification decreased (i.e., inward current increased) when the cytosolic Ca2+ concentration ([Ca2+]i) was increased above 1 microM. If [Ca2+]i is increased to 800 microM, the I-V relationship became linear. Besides the change in the I-V relationship, an increase in [Ca2+]i also increases the open probability of the channel. Regardless of the recording condition, the channel has one open and one closed state. Both closing and opening rates were dependent on [Ca2+]i; an increase of [Ca2+]i decreased the closing rate and increased the opening rate. The Ca2+ dependence of transition rates at positive membrane potentials (cell interior with respect to external surface) were much larger than the dependence at negative intracellular potentials. The I-V relationship of chloride channels in inside-out patches from cells pretreated with insulin was linear even with 1 microM [Ca2+]i, while channel currents from cells under similar conditions but without insulin still strongly rectified. Alkaline phosphatase applied to the intracellular surface of inside-out patches altered the outward rectification of single channels in a manner qualitatively similar to that of insulin pretreatment. These observations suggest that phosphorylation/dephosphorylation of the channel modulates the sensitivity of the Cl- channel to cytosolic Ca2+ and that insulin produces its effect by promoting dephosphorylation of the channel.

Full Text

The Full Text of this article is available as a PDF (961.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chan C. P., McNall S. J., Krebs E. G., Fischer E. H. Stimulation of protein phosphatase activity by insulin and growth factors in 3T3 cells. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6257–6261. doi: 10.1073/pnas.85.17.6257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cheung J. Y., Constantine J. M., Bonventre J. V. Cytosolic free calcium concentration and glucose transport in isolated cardiac myocytes. Am J Physiol. 1987 Feb;252(2 Pt 1):C163–C172. doi: 10.1152/ajpcell.1987.252.2.C163. [DOI] [PubMed] [Google Scholar]
  3. Cox M., Singer I. Insulin-mediated Na+ transport in the toad urinary bladder. Am J Physiol. 1977 Mar;232(3):F270–F277. doi: 10.1152/ajprenal.1977.232.3.F270. [DOI] [PubMed] [Google Scholar]
  4. Frizzell R. A., Rechkemmer G., Shoemaker R. L. Altered regulation of airway epithelial cell chloride channels in cystic fibrosis. Science. 1986 Aug 1;233(4763):558–560. doi: 10.1126/science.2425436. [DOI] [PubMed] [Google Scholar]
  5. Gross P., Minuth W. W., Kriz W., Frömter E. Electrical properties of renal collecting duct principal cell epithelium in tissue culture. Pflugers Arch. 1986 Apr;406(4):380–386. doi: 10.1007/BF00590940. [DOI] [PubMed] [Google Scholar]
  6. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  7. Hamilton K. L., Eaton D. C. Regulation of single sodium channels in renal tissue: a role in sodium homeostasis. Fed Proc. 1986 Nov;45(12):2713–2717. [PubMed] [Google Scholar]
  8. Herrera F. C. Effect of insulin on short-circuit current and sodium transport across toad urinary bladder. Am J Physiol. 1965 Oct;209(4):819–824. doi: 10.1152/ajplegacy.1965.209.4.819. [DOI] [PubMed] [Google Scholar]
  9. Kiechle F. L., Jarett L., Popp D. A., Kotagal N. Isolation from rat adipocytes of a chemical mediator for insulin activation of pyruvate dehydrogenase. Diabetes. 1980 Oct;29(10):852–855. doi: 10.2337/diacare.20.10.852. [DOI] [PubMed] [Google Scholar]
  10. Klip A., Li G., Logan W. J. Role of calcium ions in insulin action on hexose transport in L6 muscle cells. Am J Physiol. 1984 Sep;247(3 Pt 1):E297–E304. doi: 10.1152/ajpendo.1984.247.3.E297. [DOI] [PubMed] [Google Scholar]
  11. Koeppen B. M., Biagi B. A., Giebisch G. H. Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am J Physiol. 1983 Jan;244(1):F35–F47. doi: 10.1152/ajprenal.1983.244.1.F35. [DOI] [PubMed] [Google Scholar]
  12. Li M., McCann J. D., Liedtke C. M., Nairn A. C., Greengard P., Welsh M. J. Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Nature. 1988 Jan 28;331(6154):358–360. doi: 10.1038/331358a0. [DOI] [PubMed] [Google Scholar]
  13. Marunaka Y., Eaton D. C. Chloride channels in the apical membrane of a distal nephron A6 cell line. Am J Physiol. 1990 Feb;258(2 Pt 1):C352–C368. doi: 10.1152/ajpcell.1990.258.2.C352. [DOI] [PubMed] [Google Scholar]
  14. Nelson D. J., Tang J. M., Palmer L. G. Single-channel recordings of apical membrane chloride conductance in A6 epithelial cells. J Membr Biol. 1984;80(1):81–89. doi: 10.1007/BF01868692. [DOI] [PubMed] [Google Scholar]
  15. O'Neil R. G., Sansom S. C. Electrophysiological properties of cellular and paracellular conductive pathways of the rabbit cortical collecting duct. J Membr Biol. 1984;82(3):281–295. doi: 10.1007/BF01871637. [DOI] [PubMed] [Google Scholar]
  16. Palmer L. G., Frindt G. Epithelial sodium channels: characterization by using the patch-clamp technique. Fed Proc. 1986 Nov;45(12):2708–2712. [PubMed] [Google Scholar]
  17. Pershadsingh H. A., Gale R. D., McDonald J. M. Chelation of intracellular calcium prevents stimulation of glucose transport by insulin and insulinomimetic agents in the adipocyte. Evidence for a common mechanism. Endocrinology. 1987 Nov;121(5):1727–1732. doi: 10.1210/endo-121-5-1727. [DOI] [PubMed] [Google Scholar]
  18. Saltiel A. R., Cuatrecasas P. In search of a second messenger for insulin. Am J Physiol. 1988 Jul;255(1 Pt 1):C1–11. doi: 10.1152/ajpcell.1988.255.1.C1. [DOI] [PubMed] [Google Scholar]
  19. Sansom S. C., Weinman E. J., O'Neil R. G. Microelectrode assessment of chloride-conductive properties of cortical collecting duct. Am J Physiol. 1984 Aug;247(2 Pt 2):F291–F302. doi: 10.1152/ajprenal.1984.247.2.F291. [DOI] [PubMed] [Google Scholar]
  20. Schoen H. F., Erlij D. Insulin action on electrophysiological properties of apical and basolateral membranes of frog skin. Am J Physiol. 1987 Apr;252(4 Pt 1):C411–C417. doi: 10.1152/ajpcell.1987.252.4.C411. [DOI] [PubMed] [Google Scholar]
  21. Schuster V. L. Cyclic adenosine monophosphate-stimulated anion transport in rabbit cortical collecting duct. Kinetics, stoichiometry, and conductive pathways. J Clin Invest. 1986 Dec;78(6):1621–1630. doi: 10.1172/JCI112755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schuster V. L., Stokes J. B. Chloride transport by the cortical and outer medullary collecting duct. Am J Physiol. 1987 Aug;253(2 Pt 2):F203–F212. doi: 10.1152/ajprenal.1987.253.2.F203. [DOI] [PubMed] [Google Scholar]
  23. Siegel B., Civan M. M. Aldosterone and insulin effects on driving force of Na+ pump in toad bladder. Am J Physiol. 1976 Jun;230(6):1603–1608. doi: 10.1152/ajplegacy.1976.230.6.1603. [DOI] [PubMed] [Google Scholar]
  24. Teitelbaum I., Berl T. Effects of calcium on vasopressin-mediated cyclic adenosine monophosphate formation in cultured rat inner medullary collecting tubule cells. Evidence for the role of intracellular calcium. J Clin Invest. 1986 May;77(5):1574–1583. doi: 10.1172/JCI112473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Walker T. C., Fidelman M. L., Watlington C. O., Biber T. U. Insulin decreases apical cell membrane resistance in cultured kidney cells (A6). Biochem Biophys Res Commun. 1984 Oct 30;124(2):614–618. doi: 10.1016/0006-291x(84)91598-5. [DOI] [PubMed] [Google Scholar]
  26. Welsh M. J. An apical-membrane chloride channel in human tracheal epithelium. Science. 1986 Jun 27;232(4758):1648–1650. doi: 10.1126/science.2424085. [DOI] [PubMed] [Google Scholar]
  27. Witters L. A., Watts T. D., Daniels D. L., Evans J. L. Insulin stimulates the dephosphorylation and activation of acetyl-CoA carboxylase. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5473–5477. doi: 10.1073/pnas.85.15.5473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yang S. D., Ho L. T., Fung T. J., Yu J. S. Insulin induces activation of kinase FA in membranes and thereby promotes activation of ATP.Mg-dependent phosphatase in adipocytes. Biochem Biophys Res Commun. 1989 Feb 15;158(3):762–768. doi: 10.1016/0006-291x(89)92787-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES