Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1990 Jun 1;95(6):1021–1040. doi: 10.1085/jgp.95.6.1021

Kinetics of activation and inactivation of swelling-stimulated K+/Cl- transport. The volume-sensitive parameter is the rate constant for inactivation

PMCID: PMC2216352  PMID: 2373997

Abstract

Red blood cells of several species are known to exhibit a ouabain- insensitive, anion-dependent K+ (Rb+) flux that is stimulated by cell swelling. We have used rabbit red cells to study the kinetics of activation and inactivation of the flux upon step changes in tonicity. Sudden hypotonic swelling (210 mosmol) activates the flux after a lag period of 10 min at 37 degrees C and 30-50 min at 25 degrees C. In cells that were preswollen to activate the transporter, sudden shrinkage (by addition of hypertonic NaCl) causes a rapid inactivation of the flux; the time lag for inactivation is less than 2 min at 37 degrees C. A minimal model of the volume-sensitive KCl transport system requires two states of the transporter. The activated (A) state catalyzes transport at some finite rate (turnover number unknown because the number of transporters is unknown). The resting (R) state has a much lower or possibly zero transport rate. The interconversion between the states is characterized by unimolecular rate constants R k12 in equilibrium with k21 A. The rate of relaxation to any new steady state is equal to the sum of the rate constants k12 + k21. Because the rate of transport activation in a hypotonic medium is lower than the rate of inactivation in an isotonic medium, we conclude that the volume- sensitive rate process is inactivation (the A to R transition); that is, cell swelling activates transport by lowering k21. Three phosphatase inhibitors (fluoride, orthovanadate, and inorganic phosphate) all inhibit the swelling-activated flux and also slow down the rate of approach to the swollen steady state. This finding suggests that a net dephosphorylation is necessary for activation of the flux and that the net dephosphorylation takes place as a result of swelling- induced inhibition of a kinase rather than stimulation of a phosphatase.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altamirano A. A., Breitwieser G. E., Russell J. M. Vanadate and fluoride effects on Na+-K+-Cl- cotransport in squid giant axon. Am J Physiol. 1988 Apr;254(4 Pt 1):C582–C586. doi: 10.1152/ajpcell.1988.254.4.C582. [DOI] [PubMed] [Google Scholar]
  2. Beam K. G., Alper S. L., Palade G. E., Greengard P. Hormonally regulated phosphoprotein of turkey erythrocytes: localization to plasma membrane. J Cell Biol. 1979 Oct;83(1):1–15. doi: 10.1083/jcb.83.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berkowitz L. R., Orringer E. P. Cell volume regulation in hemoglobin CC and AA erythrocytes. Am J Physiol. 1987 Mar;252(3 Pt 1):C300–C306. doi: 10.1152/ajpcell.1987.252.3.C300. [DOI] [PubMed] [Google Scholar]
  4. Boivin P., Galand C. The human red cell acid phosphatase is a phosphotyrosine protein phosphatase which dephosphorylates the membrane protein band 3. Biochem Biophys Res Commun. 1986 Jan 29;134(2):557–564. doi: 10.1016/s0006-291x(86)80456-9. [DOI] [PubMed] [Google Scholar]
  5. Brugnara C., Bunn H. F., Tosteson D. C. Regulation of erythrocyte cation and water content in sickle cell anemia. Science. 1986 Apr 18;232(4748):388–390. doi: 10.1126/science.3961486. [DOI] [PubMed] [Google Scholar]
  6. Brugnara C., Kopin A. S., Bunn H. F., Tosteson D. C. Regulation of cation content and cell volume in hemoglobin erythrocytes from patients with homozygous hemoglobin C disease. J Clin Invest. 1985 May;75(5):1608–1617. doi: 10.1172/JCI111867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brugnara C., Tosteson D. C. Cell volume, K transport, and cell density in human erythrocytes. Am J Physiol. 1987 Mar;252(3 Pt 1):C269–C276. doi: 10.1152/ajpcell.1987.252.3.C269. [DOI] [PubMed] [Google Scholar]
  8. Brugnara C., Van Ha T., Tosteson D. C. Properties of K+ transport in resealed human erythrocyte ghosts. Am J Physiol. 1988 Sep;255(3 Pt 1):C346–C356. doi: 10.1152/ajpcell.1988.255.3.C346. [DOI] [PubMed] [Google Scholar]
  9. Brugnara C., Van Ha T., Tosteson D. C. Role of chloride in potassium transport through a K-Cl cotransport system in human red blood cells. Am J Physiol. 1989 May;256(5 Pt 1):C994–1003. doi: 10.1152/ajpcell.1989.256.5.C994. [DOI] [PubMed] [Google Scholar]
  10. Cala P. M. Volume regulation by Amphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion-flux pathways. J Gen Physiol. 1980 Dec;76(6):683–708. doi: 10.1085/jgp.76.6.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Canessa M., Fabry M. E., Blumenfeld N., Nagel R. L. Volume-stimulated, Cl(-)-dependent K+ efflux is highly expressed in young human red cells containing normal hemoglobin or HbS. J Membr Biol. 1987;97(2):97–105. doi: 10.1007/BF01869416. [DOI] [PubMed] [Google Scholar]
  12. Canessa M., Spalvins A., Nagel R. L. Volume-dependent and NEM-stimulated K+,Cl- transport is elevated in oxygenated SS, SC and CC human red cells. FEBS Lett. 1986 May 5;200(1):197–202. doi: 10.1016/0014-5793(86)80538-5. [DOI] [PubMed] [Google Scholar]
  13. Clari G., Brunati A. M., Moret V. Partial purification and characterization of phosphotyrosyl-protein phosphatase(s) from human erythrocyte cytosol. Biochem Biophys Res Commun. 1986 May 29;137(1):566–572. doi: 10.1016/0006-291x(86)91248-9. [DOI] [PubMed] [Google Scholar]
  14. Cooke A. M., Nahorski S. R., Potter B. V. myo-inositol 1,4,5-trisphosphorothioate is a potent competitive inhibitor of human erythrocyte 5-phosphatase. FEBS Lett. 1989 Jan 2;242(2):373–377. doi: 10.1016/0014-5793(89)80504-6. [DOI] [PubMed] [Google Scholar]
  15. Dunham P. B., Logue P. J. Potassium-chloride cotransport in resealed human red cell ghosts. Am J Physiol. 1986 Apr;250(4 Pt 1):C578–C583. doi: 10.1152/ajpcell.1986.250.4.C578. [DOI] [PubMed] [Google Scholar]
  16. Grinstein S., Goetz-Smith J. D., Stewart D., Beresford B. J., Mellors A. Protein phosphorylation during activation of Na+/H+ exchange by phorbol esters and by osmotic shrinking. Possible relation to cell pH and volume regulation. J Biol Chem. 1986 Jun 15;261(17):8009–8016. [PubMed] [Google Scholar]
  17. Grinstein S., Rothstein A., Sarkadi B., Gelfand E. W. Responses of lymphocytes to anisotonic media: volume-regulating behavior. Am J Physiol. 1984 Mar;246(3 Pt 1):C204–C215. doi: 10.1152/ajpcell.1984.246.3.C204. [DOI] [PubMed] [Google Scholar]
  18. Grinstein S., Rotin D., Mason M. J. Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochim Biophys Acta. 1989 Jan 18;988(1):73–97. doi: 10.1016/0304-4157(89)90004-x. [DOI] [PubMed] [Google Scholar]
  19. Haas M., McManus T. J. Effect of norepinephrine on swelling-induced potassium transport in duck red cells. Evidence against a volume-regulatory decrease under physiological conditions. J Gen Physiol. 1985 May;85(5):649–667. doi: 10.1085/jgp.85.5.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hall A. C., Ellory J. C. Effects of high hydrostatic pressure on 'passive' monovalent cation transport in human red cells. J Membr Biol. 1986;94(1):1–17. doi: 10.1007/BF01901009. [DOI] [PubMed] [Google Scholar]
  21. Kaji D. Volume-sensitive K transport in human erythrocytes. J Gen Physiol. 1986 Dec;88(6):719–738. doi: 10.1085/jgp.88.6.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kim H. D., Sergeant S., Forte L. R., Sohn D. H., Im J. H. Activation of a Cl-dependent K flux by cAMP in pig red cells. Am J Physiol. 1989 Apr;256(4 Pt 1):C772–C778. doi: 10.1152/ajpcell.1989.256.4.C772. [DOI] [PubMed] [Google Scholar]
  23. Kregenow F. M. Osmoregulatory salt transporting mechanisms: control of cell volume in anisotonic media. Annu Rev Physiol. 1981;43:493–505. doi: 10.1146/annurev.ph.43.030181.002425. [DOI] [PubMed] [Google Scholar]
  24. Kregenow F. M. The response of duck erythrocytes to nonhemolytic hypotonic media. Evidence for a volume-controlling mechanism. J Gen Physiol. 1971 Oct;58(4):372–395. doi: 10.1085/jgp.58.4.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lauf P. K. K+:Cl- cotransport: sulfhydryls, divalent cations, and the mechanism of volume activation in a red cell. J Membr Biol. 1985;88(1):1–13. doi: 10.1007/BF01871208. [DOI] [PubMed] [Google Scholar]
  26. Lauf P. K., Perkins C. M., Adragna N. C. Cell volume and metabolic dependence of NEM-activated K+-Cl- flux in human red blood cells. Am J Physiol. 1985 Jul;249(1 Pt 1):C124–C128. doi: 10.1152/ajpcell.1985.249.1.C124. [DOI] [PubMed] [Google Scholar]
  27. Lauf P. K. Thiol-dependent passive K+Cl- transport in sheep red blood cells: VI. Functional heterogeneity and immunologic identity with volume-stimulated K+(Rb+) fluxes. J Membr Biol. 1984;82(2):167–178. doi: 10.1007/BF01868941. [DOI] [PubMed] [Google Scholar]
  28. Lauf P. K. Thiol-dependent passive K/Cl transport in sheep red cells: I. Dependence on chloride and external ions. J Membr Biol. 1983;73(3):237–246. doi: 10.1007/BF01870538. [DOI] [PubMed] [Google Scholar]
  29. Lauf P. K. Thiol-dependent passive K/Cl transport in sheep red cells: VII. Volume-independent freezing by iodoacetamide, and sulfhydryl group heterogeneity. J Membr Biol. 1987;98(3):237–246. doi: 10.1007/BF01871186. [DOI] [PubMed] [Google Scholar]
  30. Macara I. G., Kustin K., Cantley L. C., Jr Glutathione reduces cytoplasmic vanadate. Mechanism and physiological implications. Biochim Biophys Acta. 1980 Apr 17;629(1):95–106. doi: 10.1016/0304-4165(80)90268-8. [DOI] [PubMed] [Google Scholar]
  31. Mahé Y., Garcia-Romeu F., Motais R. Inhibition by amiloride of both adenylate cyclase activity and the Na+/H+ antiporter in fish erythrocytes. Eur J Pharmacol. 1985 Oct 22;116(3):199–206. doi: 10.1016/0014-2999(85)90154-2. [DOI] [PubMed] [Google Scholar]
  32. McManus T. J., Haas M., Starke L. C., Lytle C. Y. The duck red cell model of volume-sensitive chloride-dependent cation transport. Ann N Y Acad Sci. 1985;456:183–186. doi: 10.1111/j.1749-6632.1985.tb14863.x. [DOI] [PubMed] [Google Scholar]
  33. O'Neill W. C. Volume-sensitive Cl-dependent K transport in human erythrocytes. Am J Physiol. 1987 Dec;253(6 Pt 1):C883–C888. doi: 10.1152/ajpcell.1987.253.6.C883. [DOI] [PubMed] [Google Scholar]
  34. Parker J. C. Glutaraldehyde fixation of sodium transport in dog red blood cells. J Gen Physiol. 1984 Nov;84(5):789–803. doi: 10.1085/jgp.84.5.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Parker J. C. Volume-responsive sodium movements in dog red blood cells. Am J Physiol. 1983 May;244(5):C324–C330. doi: 10.1152/ajpcell.1983.244.5.C324. [DOI] [PubMed] [Google Scholar]
  36. Sachs J. R. Volume-sensitive K influx in human red cell ghosts. J Gen Physiol. 1988 Nov;92(5):685–711. doi: 10.1085/jgp.92.5.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sarkadi B., Mack E., Rothstein A. Ionic events during the volume response of human peripheral blood lymphocytes to hypotonic media. II. Volume- and time-dependent activation and inactivation of ion transport pathways. J Gen Physiol. 1984 Apr;83(4):513–527. doi: 10.1085/jgp.83.4.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Speiser S., Etlinger J. D. Loss of ATP-dependent proteolysis with maturation of reticulocytes and erythrocytes. J Biol Chem. 1982 Dec 10;257(23):14122–14127. [PubMed] [Google Scholar]
  39. Usui H., Kinohara N., Yoshikawa K., Imazu M., Imaoka T., Takeda M. Phosphoprotein phosphatases in human erythrocyte cytosol. J Biol Chem. 1983 Sep 10;258(17):10455–10463. [PubMed] [Google Scholar]
  40. al-Rohil N., Jennings M. L. Volume-dependent K+ transport in rabbit red blood cells comparison with oxygenated human SS cells. Am J Physiol. 1989 Jul;257(1 Pt 1):C114–C121. doi: 10.1152/ajpcell.1989.257.1.C114. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES