Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1991 Jan 1;97(1):17–34. doi: 10.1085/jgp.97.1.17

Electrophysiological properties of isolated photoreceptors from the eye of Lima scabra

PMCID: PMC2216462  PMID: 2007886

Abstract

Photoreceptor cells were enzymatically dissociated from the eye of the file clam, Lima scabra. Micrographs of solitary cells reveal a villous rhabdomeric lobe, a smooth soma, and a heavily pigmented intermediate region. Membrane voltage recordings using patch electrodes show resting potentials around -60 mV. Input resistance ranges from 300 M omega to greater than 1 G omega, while membrane capacitance is of the order of 50-70 pF. In darkness, quantum bumps occur spontaneously and their frequency can be increased by dim continuous illumination in a fashion graded with light intensity. Stimulation with flashes of light produces a depolarizing photoresponse which is usually followed by a transient hyperpolarization if the stimulus is sufficiently intense. Changing the membrane potential with current-clamp causes the early phase to invert around +10 mV, while the hyperpolarizing dip disappears around -80 mV. With bright light, the biphasic response is followed by an additional depolarizing wave, often accompanied by a burst of action potentials. Both Na and Ca ions are required in the extracellular solution for normal photoexcitation: the response to flashes of moderate intensity is greatly degraded either when Na is replaced with Tris, or when Ca is substituted with Mg. By contrast, quantum bumps elicited by dim, sustained light are not affected by Ca removal, but they are markedly suppressed in a reversible way in 0 Na sea water. It was concluded that the generation of the receptor potential is primarily dependent on Na ions, whereas Ca is probably involved in a voltage-dependent process that shapes the photoresponse. Light adaptation by repetitive flashes leads to a decrease of the depolarizing phase and a concomitant enhancement of the hyperpolarizing dip, eventually resulting in a purely hyperpolarizing photoresponse. Dark adaptation restores the original biphasic shape of the photoresponse.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADOLPH A. R. SPONTANEOUS SLOW POTENTIAL FLUCTUATIONS IN THE LIMULUS PHOTORECEPTOR. J Gen Physiol. 1964 Nov;48:297–322. doi: 10.1085/jgp.48.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bacigalupo J., Lisman J. E. Single-channel currents activated by light in Limulus ventral photoreceptors. Nature. 1983 Jul 21;304(5923):268–270. doi: 10.1038/304268a0. [DOI] [PubMed] [Google Scholar]
  3. Bader C. R., Macleish P. R., Schwartz E. A. A voltage-clamp study of the light response in solitary rods of the tiger salamander. J Physiol. 1979 Nov;296:1–26. doi: 10.1113/jphysiol.1979.sp012988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baylor D. A., Hodgkin A. L., Lamb T. D. Reconstruction of the electrical responses of turtle cones to flashes and steps of light. J Physiol. 1974 Nov;242(3):759–791. doi: 10.1113/jphysiol.1974.sp010733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baylor D. A., Hodgkin A. L., Lamb T. D. The electrical response of turtle cones to flashes and steps of light. J Physiol. 1974 Nov;242(3):685–727. doi: 10.1113/jphysiol.1974.sp010731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bolsover S. R., Brown J. E. Calcium ion, an intracellular messenger of light adaptation, also participates in excitation of Limulus photoreceptors. J Physiol. 1985 Jul;364:381–393. doi: 10.1113/jphysiol.1985.sp015751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown J. E., Mote M. I. Ionic dependence of reversal voltage of the light response in Limulus ventral photoreceptors. J Gen Physiol. 1974 Mar;63(3):337–350. doi: 10.1085/jgp.63.3.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cornwall M. C., Gorman A. L. Ionic and spectral mechanisms of the off response to light in hyperpolarizing photoreceptors of the clam, Lima scabra. Cell Mol Neurobiol. 1983 Dec;3(4):311–328. doi: 10.1007/BF00734713. [DOI] [PubMed] [Google Scholar]
  9. Cornwall M. C., Thomas M. V. A rapid cycling dual shutter control system. Vision Res. 1979;19(8):957–959. doi: 10.1016/0042-6989(79)90035-x. [DOI] [PubMed] [Google Scholar]
  10. Dennis M. J. Electrophysiology of the visual system in a nudibranch mollusc. J Neurophysiol. 1967 Nov;30(6):1439–1465. doi: 10.1152/jn.1967.30.6.1439. [DOI] [PubMed] [Google Scholar]
  11. Detwiler P. B. Multiple light-evoked conductance changes in the photoreceptors of Hermissenda crassicornis. J Physiol. 1976 Apr;256(3):691–708. doi: 10.1113/jphysiol.1976.sp011346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. FUORTES M. G., HODGKIN A. L. CHANGES IN TIME SCALE AND SENSITIVITY IN THE OMMATIDIA OF LIMULUS. J Physiol. 1964 Aug;172:239–263. doi: 10.1113/jphysiol.1964.sp007415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fenwick E. M., Marty A., Neher E. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol. 1982 Oct;331:577–597. doi: 10.1113/jphysiol.1982.sp014393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fesenko E. E., Kolesnikov S. S., Lyubarsky A. L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature. 1985 Jan 24;313(6000):310–313. doi: 10.1038/313310a0. [DOI] [PubMed] [Google Scholar]
  15. Gorman A. L., McReynolds J. S. Hyperpolarizing and depolarizing receptor potentials in the scallop eye. Science. 1969 Jul 18;165(3890):309–310. doi: 10.1126/science.165.3890.309. [DOI] [PubMed] [Google Scholar]
  16. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  17. Hanani M., Shaw C. A potassium contribution to the response of the barnacle photoreceptor. J Physiol. 1977 Aug;270(1):151–163. doi: 10.1113/jphysiol.1977.sp011943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lisman J. E., Brown J. E. Two light-induced processes in the photoreceptor cells of Limulus ventral eye. J Gen Physiol. 1971 Nov;58(5):544–561. doi: 10.1085/jgp.58.5.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lisman J. E. Effects of removing extracellular Ca2+ on excitation and adaptation in Limulus ventral photoreceptors. Biophys J. 1976 Nov;16(11):1331–1335. doi: 10.1016/S0006-3495(76)85777-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Matthews G. Single-channel recordings demonstrate that cGMP opens the light-sensitive ion channel of the rod photoreceptor. Proc Natl Acad Sci U S A. 1987 Jan;84(1):299–302. doi: 10.1073/pnas.84.1.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McReynolds J. S., Gorman A. L. Photoreceptor potentials of opposite polarity in the eye of the scallop, Pecten irradians. J Gen Physiol. 1970 Sep;56(3):376–391. doi: 10.1085/jgp.56.3.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Meech R. W., Standen N. B. Potassium activation in Helix aspersa neurones under voltage clamp: a component mediated by calcium influx. J Physiol. 1975 Jul;249(2):211–239. doi: 10.1113/jphysiol.1975.sp011012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Millecchia R., Mauro A. The ventral photoreceptor cells of Limulus. II. The basic photoresponse. J Gen Physiol. 1969 Sep;54(3):310–330. doi: 10.1085/jgp.54.3.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mpitosos G. J. Physiology of vision in the mollusk Lima scabra. J Neurophysiol. 1973 Mar;36(2):371–383. doi: 10.1152/jn.1973.36.2.371. [DOI] [PubMed] [Google Scholar]
  25. Pelzer D., Trube G., Piper H. M. Low resting potentials in single isolated heart cells due to membrane damage by the recording microelectrode. Pflugers Arch. 1984 Feb;400(2):197–199. doi: 10.1007/BF00585040. [DOI] [PubMed] [Google Scholar]
  26. Penn R. D., Hagins W. A. Kinetics of the photocurrent of retinal rods. Biophys J. 1972 Aug;12(8):1073–1094. doi: 10.1016/S0006-3495(72)86145-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stern J. H., Lisman J. E. Internal dialysis of Limulus ventral photoreceptors. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7580–7584. doi: 10.1073/pnas.79.23.7580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stern J., Chinn K., Bacigalupo J., Lisman J. Distinct lobes of Limulus ventral photoreceptors. I. Functional and anatomical properties of lobes revealed by removal of glial cells. J Gen Physiol. 1982 Dec;80(6):825–837. doi: 10.1085/jgp.80.6.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stern J., Chinn K., Robinson P., Lisman J. The effect of nucleotides on the rate of spontaneous quantum bumps in Limulus ventral photoreceptors. J Gen Physiol. 1985 Feb;85(2):157–169. doi: 10.1085/jgp.85.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Takeda T. Discrete potential waves in the photoreceptors of a gastropod mollusc, Hermissenda crassicornis. Vision Res. 1982;22(2):303–309. doi: 10.1016/0042-6989(82)90130-4. [DOI] [PubMed] [Google Scholar]
  31. Thomas M. V. Microelectrode amplifier with improved method of input-capacitance neutralisation. Med Biol Eng Comput. 1977 Jul;15(4):450–454. doi: 10.1007/BF02458001. [DOI] [PubMed] [Google Scholar]
  32. Yeandle S., Spiegler J. B. Light-evoked and spontaneous discrete waves in the ventral nerve photoreceptor of Limulus. J Gen Physiol. 1973 May;61(5):552–571. doi: 10.1085/jgp.61.5.552. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES