Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1991 Feb 1;97(2):369–391. doi: 10.1085/jgp.97.2.369

Physiological roles of Na+/Ca2+ exchange in Limulus ventral photoreceptors

PMCID: PMC2216471  PMID: 2016582

Abstract

In previous work we have presented evidence for electrogenic Na+/Ca2+ exchange in Limulus ventral photoreceptors (1989. J. Gen. Physiol. 93:473-492). This article assesses the contributions to photoreceptor physiology from Na+/Ca2+ exchange. Four separate physiological processes were considered: maintenance of resting sensitivity, light- induced excitation, light adaptation, and dark adaptation. (a) Resting sensitivity: reduction of [Na+]o caused a [Ca2+]o-dependent reduction in light sensitivity and a speeding of the time courses of the responses to individual test flashes; this effect was dependent on the final value to which [Na+]o was reduced. The desensitization caused by Na+ reduction was dependent on the initial sensitivity of the photoreceptor; in fully dark-adapted conditions no desensitization was observed; in light-adapted conditions, extensive desensitization was observed. (b) Excitation: Na+ reduction in fully dark-adapted conditions caused a Ca2+o-dependent depolarizing phase in the receptor potential that persisted beyond the stimulus duration and was evoked by a bright adapting flash. (c) Light adaptation: the degree of desensitization induced by a bright adapting flash was Na+o dependent, being larger with lower [Na+]o. Na+ reduction enhanced light adaptation only at intensities brighter than 4 x 10(-6) W/cm2. In addition to being Na+o dependent, light adaptation was Ca2+o dependent, being greater at higher [Ca2+]o. (d) Dark adaptation: the recovery of light sensitivity after adapting illumination was Na+o dependent. Dark adaptation after bright illumination in voltage-clamped and in unclamped conditions was faster in normal-Na+ saline than in reduced Na+ saline. The final sensitivity to which photoreceptors recovered was lower in reduced-Na+ saline when bright adapting illumination was used. The results suggest the involvement of Na+/Ca2+ exchange in each of these physiological processes. Na+/Ca2+ exchange may contribute to these processes by counteracting normal elevations in [Ca2+]i.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADOLPH A. R. SPONTANEOUS SLOW POTENTIAL FLUCTUATIONS IN THE LIMULUS PHOTORECEPTOR. J Gen Physiol. 1964 Nov;48:297–322. doi: 10.1085/jgp.48.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker P. F., Blaustein M. P., Hodgkin A. L., Steinhardt R. A. The influence of calcium on sodium efflux in squid axons. J Physiol. 1969 Feb;200(2):431–458. doi: 10.1113/jphysiol.1969.sp008702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blaustein M. P., Hodgkin A. L. The effect of cyanide on the efflux of calcium from squid axons. J Physiol. 1969 Feb;200(2):497–527. doi: 10.1113/jphysiol.1969.sp008704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bolsover S. R., Brown J. E. Calcium ion, an intracellular messenger of light adaptation, also participates in excitation of Limulus photoreceptors. J Physiol. 1985 Jul;364:381–393. doi: 10.1113/jphysiol.1985.sp015751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bolsover S. R., Brown J. E. Injection of guanosine and adenosine nucleotides into Limulus ventral photoreceptor cells. J Physiol. 1982 Nov;332:325–342. doi: 10.1113/jphysiol.1982.sp014416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown J. E., Blinks J. R. Changes in intracellular free calcium concentration during illumination of invertebrate photoreceptors. Detection with aequorin. J Gen Physiol. 1974 Dec;64(6):643–665. doi: 10.1085/jgp.64.6.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown J. E., Lisman J. E. An electrogenic sodium pump in Limulus ventral photoreceptor cells. J Gen Physiol. 1972 Jun;59(6):720–733. doi: 10.1085/jgp.59.6.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown J. E., Lisman J. E. Intracellular Ca modulates sensitivity and time scale in Limulus ventral photoreceptors. Nature. 1975 Nov 20;258(5532):252–254. doi: 10.1038/258252a0. [DOI] [PubMed] [Google Scholar]
  9. Brown J. E., Mote M. I. Ionic dependence of reversal voltage of the light response in Limulus ventral photoreceptors. J Gen Physiol. 1974 Mar;63(3):337–350. doi: 10.1085/jgp.63.3.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chinn K., Lisman J. Calcium mediates the light-induced decrease in maintained K+ current in Limulus ventral photoreceptors. J Gen Physiol. 1984 Sep;84(3):447–462. doi: 10.1085/jgp.84.3.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Corson D. W., Fein A. Chemical excitation of Limulus photoreceptors. I. Phosphatase inhibitors induce discrete-wave production in the dark. J Gen Physiol. 1983 Nov;82(5):639–657. doi: 10.1085/jgp.82.5.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DiPolo R., Beaugé L. Characterization of the reverse Na/Ca exchange in squid axons and its modulation by Cai and ATP. Cai-dependent Nai/Cao and Nai/Nao exchange modes. J Gen Physiol. 1987 Oct;90(4):505–525. doi: 10.1085/jgp.90.4.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. DiPolo R., Beaugé L. The calcium pump and sodium-calcium exchange in squid axons. Annu Rev Physiol. 1983;45:313–324. doi: 10.1146/annurev.ph.45.030183.001525. [DOI] [PubMed] [Google Scholar]
  14. Dodge F. A., Jr, Knight B. W., Toyoda J. Voltage noise in Limulus visual cells. Science. 1968 Apr 5;160(3823):88–90. doi: 10.1126/science.160.3823.88. [DOI] [PubMed] [Google Scholar]
  15. FUORTES M. G., YEANDLE S. PROBABILITY OF OCCURRENCE OF DISCRETE POTENTIAL WAVES IN THE EYE OF LIMULUS. J Gen Physiol. 1964 Jan;47:443–463. doi: 10.1085/jgp.47.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fein A., Charlton J. S. A quantitative comparison of the effects of intracellular calcium injection and light adaptation on the photoresponse of Limulus ventral photoreceptors. J Gen Physiol. 1977 Nov;70(5):591–600. doi: 10.1085/jgp.70.5.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fein A., Charlton J. S. Recovery from adapting light in Limulus ventral photoreceptors. Brain Res. 1978 Sep 29;153(3):585–590. doi: 10.1016/0006-8993(78)90342-6. [DOI] [PubMed] [Google Scholar]
  18. Fein A., Tsacopoulos M. Light-induced oxygen consumption in Limulus ventral photoreceptors does not result from a rise in the intracellular sodium concentration. J Gen Physiol. 1988 Apr;91(4):515–527. doi: 10.1085/jgp.91.4.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Leonard R. J., Lisman J. E. Light modulates voltage-dependent potassium channels in limulus ventral photoreceptors. Science. 1981 Jun 12;212(4500):1273–1275. doi: 10.1126/science.212.4500.1273. [DOI] [PubMed] [Google Scholar]
  20. Levy S., Fein A. Relationship between light sensitivity and intracellular free Ca concentration in Limulus ventral photoreceptors. A quantitative study using Ca-selective microelectrodes. J Gen Physiol. 1985 Jun;85(6):805–841. doi: 10.1085/jgp.85.6.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lisman J. E., Brown J. E. Light-induced changes of sensitivity in Limulus ventral photoreceptors. J Gen Physiol. 1975 Oct;66(4):473–488. doi: 10.1085/jgp.66.4.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lisman J. E., Brown J. E. The effects of intracellular iontophoretic injection of calcium and sodium ions on the light response of Limulus ventral photoreceptors. J Gen Physiol. 1972 Jun;59(6):701–719. doi: 10.1085/jgp.59.6.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lisman J. E. Effects of removing extracellular Ca2+ on excitation and adaptation in Limulus ventral photoreceptors. Biophys J. 1976 Nov;16(11):1331–1335. doi: 10.1016/S0006-3495(76)85777-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lisman J. E., Fain G. L., O'Day P. M. Voltage-dependent conductances in Limulus ventral photoreceptors. J Gen Physiol. 1982 Feb;79(2):187–209. doi: 10.1085/jgp.79.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Millecchia R., Mauro A. The ventral photoreceptor cells of Limulus. 3. A voltage-clamp study. J Gen Physiol. 1969 Sep;54(3):331–351. doi: 10.1085/jgp.54.3.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Millecchia R., Mauro A. The ventral photoreceptor cells of Limulus. II. The basic photoresponse. J Gen Physiol. 1969 Sep;54(3):310–330. doi: 10.1085/jgp.54.3.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Minke B., Tsacopoulos M. Light induced sodium dependent accumulation of calcium and potassium in the extracellular space of bee retina. Vision Res. 1986;26(5):679–690. doi: 10.1016/0042-6989(86)90082-9. [DOI] [PubMed] [Google Scholar]
  28. O'Day P. M., Gray-Keller M. P. Evidence for electrogenic Na+/Ca2+ exchange in Limulus ventral photoreceptors. J Gen Physiol. 1989 Mar;93(3):473–494. doi: 10.1085/jgp.93.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. O'Day P. M., Lisman J. E., Goldring M. Functional significance of voltage-dependent conductances in Limulus ventral photoreceptors. J Gen Physiol. 1982 Feb;79(2):211–232. doi: 10.1085/jgp.79.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. O'Day P. M., Lisman J. E. Octopamine enhances dark-adaptation in Limulus ventral photoreceptors. J Neurosci. 1985 Jun;5(6):1490–1496. doi: 10.1523/JNEUROSCI.05-06-01490.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Payne R., Corson D. W., Fein A., Berridge M. J. Excitation and adaptation of Limulus ventral photoreceptors by inositol 1,4,5 triphosphate result from a rise in intracellular calcium. J Gen Physiol. 1986 Jul;88(1):127–142. doi: 10.1085/jgp.88.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Payne R., Corson D. W., Fein A. Pressure injection of calcium both excites and adapts Limulus ventral photoreceptors. J Gen Physiol. 1986 Jul;88(1):107–126. doi: 10.1085/jgp.88.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Payne R., Fein A. Inositol 1,4,5 trisphosphate releases calcium from specialized sites within Limulus photoreceptors. J Cell Biol. 1987 Apr;104(4):933–937. doi: 10.1083/jcb.104.4.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Reuter H., Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol. 1968 Mar;195(2):451–470. doi: 10.1113/jphysiol.1968.sp008467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stieve H., Bruns M. Extracellular calcium, magnesium, and sodium ion competition in the conductance control of the photosensory membrane of Limulus ventral nerve photoreceptor. Z Naturforsch C. 1978 Jul-Aug;33(7-8):574–579. doi: 10.1515/znc-1978-7-820. [DOI] [PubMed] [Google Scholar]
  36. Wong F. Nature of light-induced conductance changes in ventral photoreceptors of Limulus. Nature. 1978 Nov 2;276(5683):76–79. doi: 10.1038/276076a0. [DOI] [PubMed] [Google Scholar]
  37. Wulff V. J., Fahy J. L. Influence of calcium on the Limulus photoreceptor potential. Brain Res Bull. 1979 Nov-Dec;4(6):809–818. doi: 10.1016/0361-9230(79)90017-0. [DOI] [PubMed] [Google Scholar]
  38. Yau K. W., Nakatani K. Electrogenic Na-Ca exchange in retinal rod outer segment. Nature. 1984 Oct 18;311(5987):661–663. doi: 10.1038/311661a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES