Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1991 Feb 1;97(2):219–243. doi: 10.1085/jgp.97.2.219

K+ secretion across frog skin. Induction by removal of basolateral Cl-

PMCID: PMC2216474  PMID: 2016579

Abstract

We examined the development of K+ secretion after removing Cl- from the basolateral surface of isolated skins of Rana temporaria using noise analysis. K+ secretion was defined by the appearance of a Lorentzian component in the power density spectrum (PDS) when Ba2+ was present in the apical bath (0.5 mM). No Lorentzians were observed when tissues were bathed in control, NaCl Ringer solution. Replacement of basolateral Cl- by gluconate, nitrate, or SO4- (0-Clb) yielded Lorentzians with corner frequencies near 25 Hz, and plateau values (So) that were used to estimate the magnitude of K+ secretion through channels in the apical cell membranes of the principal cells. The response was reversible and reproducible. In contrast, removing apical Cl- did not alter the PDS. Reduction of basolateral Cl- to 11.5 mM induced Lorentzians, but with lower values of So. Inhibition of Na+ transport with amiloride or by omitting apical Na+ depressed K+ secretion but did not prevent its appearance in response to 0-Clb. Using microelectrodes, we observed depolarization of the intracellular voltage concomitant with increased resistance of the basolateral membrane after 0-Clb. Basolateral application of Ba2+ to depolarize cells also induced K+ secretion. Because apical conductance and channel density are unchanged after 0-Clb, we conclude that K+ secretion is "induced" simply by an increase of the electrical driving force for K+ exit across this membrane. Repolarization of the apical membrane after 0-Clb eliminated K+ secretion, while further depolarization increased the magnitude of the secretory current. The cell depolarization after 0- Clb is most likely caused directly by a decrease of the basolateral membrane K+ conductance. Ba2(+)-induced Lorentzians also were elicited by basolateral hypertonic solutions but with lower values of So, indicating that cell shrinkage per se could not entirely account for the response to 0-Clb and that the effects of 0-Clb may be partly related to a fall of intracellular Cl-.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biber T. U., Drewnowska K., Baumgarten C. M., Fisher R. S. Intracellular Cl activity changes of frog skin. Am J Physiol. 1985 Sep;249(3 Pt 2):F432–F438. doi: 10.1152/ajprenal.1985.249.3.F432. [DOI] [PubMed] [Google Scholar]
  2. Civan M. M., Peterson-Yantorno K. Intracellular pH regulation in frog skin: a 31P-nuclear magnetic resonance study. Am J Physiol. 1986 Nov;251(5 Pt 2):F831–F838. doi: 10.1152/ajprenal.1986.251.5.F831. [DOI] [PubMed] [Google Scholar]
  3. Costa P. M., Fernandes P. L., Ferreira H. G., Ferreira K. T., Giraldez F. Effects of cell volume changes on membrane ionic permeabilities and sodium transport in frog skin (Rana ridibunda). J Physiol. 1987 Dec;393:1–17. doi: 10.1113/jphysiol.1987.sp016806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dawson D. C., Van Driessche W., Helman S. I. Osmotically induced basolateral K+ conductance in turtle colon: lidocaine-induced K+ channel noise. Am J Physiol. 1988 Jan;254(1 Pt 1):C165–C174. doi: 10.1152/ajpcell.1988.254.1.C165. [DOI] [PubMed] [Google Scholar]
  5. De Wolf I., Van Driessche W. Voltage-dependent Ba2+ block of K+ channels in apical membrane of frog skin. Am J Physiol. 1986 Nov;251(5 Pt 1):C696–C706. doi: 10.1152/ajpcell.1986.251.5.C696. [DOI] [PubMed] [Google Scholar]
  6. Duffey M. E., Kelepouris E., Peterson-Yantorno K., Civan M. M. Microelectrode study of intracellular pH in frog skin: dependence on serosal chloride. Am J Physiol. 1986 Sep;251(3 Pt 2):F468–F474. doi: 10.1152/ajprenal.1986.251.3.F468. [DOI] [PubMed] [Google Scholar]
  7. Dörge A., Beck F. X., Wienecke P., Rick R. Cl transport across the basolateral membrane of principal cells in frog skin. Miner Electrolyte Metab. 1989;15(3):155–162. [PubMed] [Google Scholar]
  8. Ehrenfeld J., Garcia-Romeu F. Active hydrogen excretion and sodium absorption through isolated frog skin. Am J Physiol. 1977 Jul;233(1):F46–F54. doi: 10.1152/ajprenal.1977.233.1.F46. [DOI] [PubMed] [Google Scholar]
  9. Ferreira K. T., Ferreira H. G. The regulation of volume and ion composition in frog skin. Biochim Biophys Acta. 1981 Aug 20;646(2):193–202. doi: 10.1016/0005-2736(81)90325-4. [DOI] [PubMed] [Google Scholar]
  10. Fisher R. S., Erlij D., Helman S. I. Intracellular voltage of isolated epithelia of frog skin: apical and basolateral cell punctures. J Gen Physiol. 1980 Oct;76(4):447–453. doi: 10.1085/jgp.76.4.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fisher R. S., Lockard J. W. Complex response of epithelial cells to inhibition of Na+ transport by amiloride. Am J Physiol. 1988 Feb;254(2 Pt 1):C297–C303. doi: 10.1152/ajpcell.1988.254.2.C297. [DOI] [PubMed] [Google Scholar]
  12. García-Díaz J. F., Baxendale L. M., Klemperer G., Essig A. Cell K activity in frog skin in the presence and absence of cell current. J Membr Biol. 1985;85(2):143–158. doi: 10.1007/BF01871267. [DOI] [PubMed] [Google Scholar]
  13. Giraldez F., Ferreira K. T. Intracellular chloride activity and membrane potential in stripped frog skin (Rana temporaria). Biochim Biophys Acta. 1984 Feb 15;769(3):625–628. doi: 10.1016/0005-2736(84)90062-2. [DOI] [PubMed] [Google Scholar]
  14. Grinstein S., Clarke C. A., Dupre A., Rothstein A. Volume-induced increase of anion permeability in human lymphocytes. J Gen Physiol. 1982 Dec;80(6):801–823. doi: 10.1085/jgp.80.6.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Helman S. I., Fisher R. S. Microelectrode studies of the active Na transport pathway of frog skin. J Gen Physiol. 1977 May;69(5):571–604. doi: 10.1085/jgp.69.5.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
  17. Klemperer G., Essig A. Influence of serosal Cl on transport properties and cation activities in frog skin. J Membr Biol. 1988 Dec;106(2):107–118. doi: 10.1007/BF01871392. [DOI] [PubMed] [Google Scholar]
  18. Koeppen B. M., Biagi B. A., Giebisch G. H. Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am J Physiol. 1983 Jan;244(1):F35–F47. doi: 10.1152/ajprenal.1983.244.1.F35. [DOI] [PubMed] [Google Scholar]
  19. Larson M., Spring K. R. Volume regulation by Necturus gallbladder: basolateral KCl exit. J Membr Biol. 1984;81(3):219–232. doi: 10.1007/BF01868715. [DOI] [PubMed] [Google Scholar]
  20. Leibowich S., DeLong J., Civan M. M. Apical Na+ permeability of frog skin during serosal Cl- replacement. J Membr Biol. 1988 May;102(2):121–130. doi: 10.1007/BF01870450. [DOI] [PubMed] [Google Scholar]
  21. Lewis S. A., Butt A. G., Bowler M. J., Leader J. P., Macknight A. D. Effects of anions on cellular volume and transepithelial Na+ transport across toad urinary bladder. J Membr Biol. 1985;83(1-2):119–137. doi: 10.1007/BF01868744. [DOI] [PubMed] [Google Scholar]
  22. Nagel W. Effects of antidiuretic hormone upon electrical potential and resistance of apical and basolateral membranes of frog skin. J Membr Biol. 1978 Sep 18;42(2):99–122. doi: 10.1007/BF01885366. [DOI] [PubMed] [Google Scholar]
  23. Nagel W., Garcia-Diaz J. F., Essig A. Contribution of junctional conductance to the cellular voltage-divider ratio in frog skins. Pflugers Arch. 1983 Dec;399(4):336–341. doi: 10.1007/BF00652761. [DOI] [PubMed] [Google Scholar]
  24. Nagel W., Hirschmann W. K+-permeability of the outer border of the frog skin (R. temporaria). J Membr Biol. 1980;52(2):107–113. doi: 10.1007/BF01869115. [DOI] [PubMed] [Google Scholar]
  25. Nagel W. Inhibition of potassium conductance by barium in frog skin epithelium. Biochim Biophys Acta. 1979 Apr 4;552(2):346–357. doi: 10.1016/0005-2736(79)90289-x. [DOI] [PubMed] [Google Scholar]
  26. Nagel W. The dependence of the electrical potentials across the membranes of the frog skin upon the concentration of sodium in the mucosal solution. J Physiol. 1977 Aug;269(3):777–796. doi: 10.1113/jphysiol.1977.sp011929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nagel W. The intracellular electrical potential profile of the frog skin epithelium. Pflugers Arch. 1976 Sep 30;365(2-3):135–143. doi: 10.1007/BF01067010. [DOI] [PubMed] [Google Scholar]
  28. Nielsen R. Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane. Acta Physiol Scand. 1984 Feb;120(2):287–296. doi: 10.1111/j.1748-1716.1984.tb00136.x. [DOI] [PubMed] [Google Scholar]
  29. Nielsen R. Effect of Ba2+ and furosemide on K+ and Rb+ secretion and absorption in isolated frog skin. Acta Physiol Scand. 1987 Oct;131(2):221–229. doi: 10.1111/j.1748-1716.1987.tb08230.x. [DOI] [PubMed] [Google Scholar]
  30. O'Neil R. G., Sansom S. C. Characterization of apical cell membrane Na+ and K+ conductances of cortical collecting duct using microelectrode techniques. Am J Physiol. 1984 Jul;247(1 Pt 2):F14–F24. doi: 10.1152/ajprenal.1984.247.1.F14. [DOI] [PubMed] [Google Scholar]
  31. Rick R., Dörge A., von Arnim E., Thurau K. Electron microprobe analysis of frog skin epithelium: evidence for a syncytial sodium transport compartment. J Membr Biol. 1978 Mar 20;39(4):313–331. doi: 10.1007/BF01869897. [DOI] [PubMed] [Google Scholar]
  32. Stoddard J. S., Jakobsson E., Helman S. I. Basolateral membrane chloride transport in isolated epithelia of frog skin. Am J Physiol. 1985 Sep;249(3 Pt 1):C318–C329. doi: 10.1152/ajpcell.1985.249.3.C318. [DOI] [PubMed] [Google Scholar]
  33. USSING H. H. RELATIONSHIP BETWEEN OSMOTIC REACTIONS AND ACTIVE SODIUM TRANSPORT IN THE FROG SKIN EPITHELIUM. Acta Physiol Scand. 1965 Jan-Feb;63:141–155. doi: 10.1111/j.1748-1716.1965.tb04052.x. [DOI] [PubMed] [Google Scholar]
  34. USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]
  35. Van Driessche W., Erlij D. Noise analysis of inward and outward Na+ currents across the apical border of ouabain-treated frog skin. Pflugers Arch. 1983 Aug;398(3):179–188. doi: 10.1007/BF00657149. [DOI] [PubMed] [Google Scholar]
  36. Van Driessche W. Physiological role of apical potassium ion channels in frog skin. J Physiol. 1984 Nov;356:79–95. doi: 10.1113/jphysiol.1984.sp015454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Van Driessche W., Zeiske W. Ba2+-induced conductance fluctuations of spontaneously fluctuating K+ channels in the apical membrane of frog skin (Rana temporaria). J Membr Biol. 1980 Aug 21;56(1):31–42. doi: 10.1007/BF01869349. [DOI] [PubMed] [Google Scholar]
  38. Van Driessche W., Zeiske W. Ionic channels in epithelial cell membranes. Physiol Rev. 1985 Oct;65(4):833–903. doi: 10.1152/physrev.1985.65.4.833. [DOI] [PubMed] [Google Scholar]
  39. Wills N. K., Biagi B. Active potassium transport by rabbit descending colon epithelium. J Membr Biol. 1982;64(3):195–203. doi: 10.1007/BF01870886. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES