Abstract
A detailed kinetic study of K:Cl cotransport in hyposmotically swollen low K sheep red blood cells was carried out to characterize the nature of the outwardly poised carrier. The kinetic parameters were determined from the rate of K efflux and influx under zero-K-trans conditions in red cells with cellular K altered by the nystatin method and with different extracellular K or Rb concentrations. Although apparent affinities for efflux and influx were quite similar, the maximal velocity for K efflux was approximately two times greater than for influx. Furthermore, at thermodynamic equilibrium (i.e., when the ion product of K and Cl within the cell was equal to that outside) a temperature-dependent net K efflux was observed, approaching zero only when the external product reached approximately two times the internal product. The binding order of the ions to the transporter was asymmetric, being ordered outside (Cl binding first, followed by K) and random inside. K efflux but not influx was trans-inhibited by KCl. Trans inhibition of K efflux was used to verify the order of binding outside: trans inhibition by external Cl occurred in the absence of external K, but not vice versa. Thus K:Cl cotransport is kinetically asymmetric in hyposmotically swollen low K sheep red cells.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvarado F., Mahmood A. Cotransport of organic solutes and sodium ions in the small intestine: a general model. Amino acid transport. Biochemistry. 1974 Jul 2;13(14):2882–2890. doi: 10.1021/bi00711a017. [DOI] [PubMed] [Google Scholar]
- Atlan H., Snyder D., Panet R. Ouabain-resistant Na+, K+ transport system in mouse NIH 3T3 cells. J Membr Biol. 1984;81(3):181–188. doi: 10.1007/BF01868712. [DOI] [PubMed] [Google Scholar]
- Brugnara C., Kopin A. S., Bunn H. F., Tosteson D. C. Regulation of cation content and cell volume in hemoglobin erythrocytes from patients with homozygous hemoglobin C disease. J Clin Invest. 1985 May;75(5):1608–1617. doi: 10.1172/JCI111867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brugnara C., Tosteson D. C. Cell volume, K transport, and cell density in human erythrocytes. Am J Physiol. 1987 Mar;252(3 Pt 1):C269–C276. doi: 10.1152/ajpcell.1987.252.3.C269. [DOI] [PubMed] [Google Scholar]
- Canessa M., Fabry M. E., Nagel R. L. Deoxygenation inhibits the volume-stimulated, Cl(-)-dependent K+ efflux in SS and young AA cells: a cytosolic Mg2+ modulation. Blood. 1987 Dec;70(6):1861–1866. [PubMed] [Google Scholar]
- Cha S. A simple method for derivation of rate equations for enzyme-catalyzed reactions under the rapid equilibrium assumption or combined assumptions of equilibrium and steady state. J Biol Chem. 1968 Feb 25;243(4):820–825. [PubMed] [Google Scholar]
- Chipperfield A. R. Chloride dependence of frusemide- and phloretin-sensitive passive sodium and potassium fluxes in human red cells. J Physiol. 1981 Mar;312:435–444. doi: 10.1113/jphysiol.1981.sp013636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuppoletti J., Segel I. H. Kinetics of sulfate transport by Penicillium notatum. Interactions of sulfate, protons, and calcium. Biochemistry. 1975 Oct 21;14(21):4712–4718. doi: 10.1021/bi00692a023. [DOI] [PubMed] [Google Scholar]
- Duhm J., Göbel B. O. Na+-K+ transport and volume of rat erythrocytes under dietary K+ deficiency. Am J Physiol. 1984 Jan;246(1 Pt 1):C20–C29. doi: 10.1152/ajpcell.1984.246.1.C20. [DOI] [PubMed] [Google Scholar]
- Ellory J. C., Dunham P. B., Logue P. J., Stewart G. W. Anion-dependent cation transport in erythrocytes. Philos Trans R Soc Lond B Biol Sci. 1982 Dec 1;299(1097):483–495. doi: 10.1098/rstb.1982.0146. [DOI] [PubMed] [Google Scholar]
- Fujise H., Lauf P. K. Swelling, NEM, and A23187 activate Cl(-)-dependent K+ transport in high-K+ sheep red cells. Am J Physiol. 1987 Feb;252(2 Pt 1):C197–C204. doi: 10.1152/ajpcell.1987.252.2.C197. [DOI] [PubMed] [Google Scholar]
- Garcia M. L., Viitanen P., Foster D. L., Kaback H. R. Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli. 1. Effect of pH and imposed membrane potential on efflux, exchange, and counterflow. Biochemistry. 1983 May 10;22(10):2524–2531. doi: 10.1021/bi00279a033. [DOI] [PubMed] [Google Scholar]
- Hall A. C., Ellory J. C. Measurement and stoichiometry of bumetanide-sensitive (2Na:1K:3Cl) cotransport in ferret red cells. J Membr Biol. 1985;85(3):205–213. doi: 10.1007/BF01871515. [DOI] [PubMed] [Google Scholar]
- Hopfer U., Groseclose R. The mechanism of Na+-dependent D-glucose transport. J Biol Chem. 1980 May 25;255(10):4453–4462. [PubMed] [Google Scholar]
- Imler J. R., Vidaver G. A. Anion effects on glycine entry into pigeon red blood cells. Biochim Biophys Acta. 1972 Oct 23;288(1):153–165. doi: 10.1016/0005-2736(72)90233-7. [DOI] [PubMed] [Google Scholar]
- Joiner C. H., Lauf P. K. Modulation of ouabain binding and potassium pump fluxes by cellular sodium and potassium in human and sheep erythrocytes. J Physiol. 1978 Oct;283:177–196. doi: 10.1113/jphysiol.1978.sp012495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaji D., Kahn T. Kinetics of Cl-dependent K influx in human erythrocytes with and without external Na: effect of NEM. Am J Physiol. 1985 Nov;249(5 Pt 1):C490–C496. doi: 10.1152/ajpcell.1985.249.5.C490. [DOI] [PubMed] [Google Scholar]
- Kaji D. Volume-sensitive K transport in human erythrocytes. J Gen Physiol. 1986 Dec;88(6):719–738. doi: 10.1085/jgp.88.6.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaunitz J. D., Wright E. M. Kinetics of sodium D-glucose cotransport in bovine intestinal brush border vesicles. J Membr Biol. 1984;79(1):41–51. doi: 10.1007/BF01868525. [DOI] [PubMed] [Google Scholar]
- Kikuta Y., Hoshi T. Role of sodium ions in p-aminohippurate transport by newt kidney. Biochim Biophys Acta. 1979 Jun 2;553(3):404–416. doi: 10.1016/0005-2736(79)90296-7. [DOI] [PubMed] [Google Scholar]
- Kim H. D., Sergeant S., Forte L. R., Sohn D. H., Im J. H. Activation of a Cl-dependent K flux by cAMP in pig red cells. Am J Physiol. 1989 Apr;256(4 Pt 1):C772–C778. doi: 10.1152/ajpcell.1989.256.4.C772. [DOI] [PubMed] [Google Scholar]
- Kippen I., Hirayama B., Klinenberg J. R., Wright E. M. Transport of tricarboxylic acid cycle intermediates by membrane vesicles from renal brush border. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3397–3400. doi: 10.1073/pnas.76.7.3397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lauf P. K., Adragna N. C., Garay R. P. Activation by N-ethylmaleimide of a latent K+-Cl- flux in human red blood cells. Am J Physiol. 1984 May;246(5 Pt 1):C385–C390. doi: 10.1152/ajpcell.1984.246.5.C385. [DOI] [PubMed] [Google Scholar]
- Lauf P. K., Bauer J. Direct evidence for chloride-dependent volume reduction in macrocytic sheep reticulocytes. Biochem Biophys Res Commun. 1987 Apr 29;144(2):849–855. doi: 10.1016/s0006-291x(87)80042-6. [DOI] [PubMed] [Google Scholar]
- Lauf P. K. Kinetic comparison of ouabain-resistant K:Cl fluxes (K:Cl [Co]-transport) stimulated in sheep erythrocytes by membrane thiol oxidation and alkylation. Mol Cell Biochem. 1988 Jul-Aug;82(1-2):97–106. doi: 10.1007/BF00242523. [DOI] [PubMed] [Google Scholar]
- Lauf P. K., McManus T. J., Haas M., Forbush B., 3rd, Duhm J., Flatman P. W., Saier M. H., Jr, Russell J. M. Physiology and biophysics of chloride and cation cotransport across cell membranes. Fed Proc. 1987 May 15;46(7):2377–2394. [PubMed] [Google Scholar]
- Lauf P. K. Passive K+-Cl- fluxes in low-K+ sheep erythrocytes: modulation by A23187 and bivalent cations. Am J Physiol. 1985 Sep;249(3 Pt 1):C271–C278. doi: 10.1152/ajpcell.1985.249.3.C271. [DOI] [PubMed] [Google Scholar]
- Lauf P. K. Thiol-dependent passive K/Cl transport in sheep red cells: I. Dependence on chloride and external ions. J Membr Biol. 1983;73(3):237–246. doi: 10.1007/BF01870538. [DOI] [PubMed] [Google Scholar]
- Lauf P. K. Thiol-dependent passive K/Cl transport in sheep red cells: II. Loss of Cl- and N-ethylmaleimide sensitivity in maturing high K+ cells. J Membr Biol. 1983;73(3):247–256. doi: 10.1007/BF01870539. [DOI] [PubMed] [Google Scholar]
- Lauf P. K. Thiol-dependent passive K/Cl transport in sheep red cells: IV. Furosemide inhibition as a function of external Rb+, Na+, and Cl-. J Membr Biol. 1984;77(1):57–62. doi: 10.1007/BF01871100. [DOI] [PubMed] [Google Scholar]
- Lauf P. K. Volume and anion dependency of ouabain-resistant K-Rb fluxes in sheep red blood cells. Am J Physiol. 1988 Sep;255(3 Pt 1):C331–C339. doi: 10.1152/ajpcell.1988.255.3.C331. [DOI] [PubMed] [Google Scholar]
- Lauf P. K., Zeidler R. B., Kim H. D. Pig reticulocytes. V. Development of Rb+ influx during in vitro maturation. J Cell Physiol. 1984 Nov;121(2):284–290. doi: 10.1002/jcp.1041210204. [DOI] [PubMed] [Google Scholar]
- Miyamoto H., Ikehara T., Yamaguchi H., Hosokawa K., Yonezu T., Masuya T. Kinetic mechanism of Na+, K+, Cl--cotransport as studied by Rb+ influx into HeLa cells: effects of extracellular monovalent ions. J Membr Biol. 1986;92(2):135–150. doi: 10.1007/BF01870703. [DOI] [PubMed] [Google Scholar]
- Parker J. C. Hemolytic action of potassium salts on dog red blood cells. Am J Physiol. 1983 May;244(5):C313–C317. doi: 10.1152/ajpcell.1983.244.5.C313. [DOI] [PubMed] [Google Scholar]
- Roomans G. M., Borst-Pauwels G. W. Interaction of cations with phosphate uptake by Saccharomyces cerevisiae. Effects of surface potential. Biochem J. 1979 Mar 15;178(3):521–527. doi: 10.1042/bj1780521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stein W. D. Intrinsic, apparent, and effective affinities of co- and countertransport systems. Am J Physiol. 1986 Apr;250(4 Pt 1):C523–C533. doi: 10.1152/ajpcell.1986.250.4.C523. [DOI] [PubMed] [Google Scholar]
- de Bruijne A. W., Vreeburg H., van Steveninck J. Alternative-substrate inhibition of L-lactate transport via the monocarboxylate-specific carrier system in human erythrocytes. Biochim Biophys Acta. 1985 Feb 14;812(3):841–844. doi: 10.1016/0005-2736(85)90280-9. [DOI] [PubMed] [Google Scholar]
- van den Broek P. J., van Steveninck J. Kinetic analysis of simultaneously occurring proton-sorbose symport and passive sorbose transport in Saccharomyces fragilis. Biochim Biophys Acta. 1980 Nov 4;602(2):419–432. doi: 10.1016/0005-2736(80)90321-1. [DOI] [PubMed] [Google Scholar]
