Abstract
Unidirectional [14C]HCO3- and 36Cl- efflux from human red cells and ghosts was studied under self-exchange conditions at pH 7.8 and 0 degrees C by means of the Millipore-Swinnex filtering technique. Control bicarbonate experiments showed that 14CO2 loss from the cells to the efflux medium was insignificant. The anion flux was determined under (a) symmetric variations of the anion concentration (C(i) = C(o) = 5-700 mM), and (b) asymmetric conditions with CAn constant on one side and varied on the other side of the membrane. Simple Michaelis- Menten-like kinetics (MM fit: J(eff) = J(eff)max.C/(K1/2 + C)) was used to describe anion flux dependence on C for (a) C(i) = C(o) = 5-100 mM, (b) C(i) = 6-100 mM, C(o) = constant, and (c) C(i) = constant, C(o) = 1- 25 mM. At higher cellular concentrations noncompetitive self-inhibition by anion binding (inhibition constant Ki mM) to an intracellular site was included in the model (MS fit): J(eff) = J(eff)max.C(i)/[(K1/2 + C(i)).(1 + C(i)/Ki)]. The MM fits show that the external half- saturation constant, Ko1/2 ( = C(o)An for J(eff,o) = 1/2.j(eff,o)max) at C(o) = 1-25 mM is 1.5-2.4 mM (HCO3-) and 1.8-2.6 mM (Cl-). At C(o) = 1-260 mM Ko1/2 is 1.2-1.5 mM (HCO3-) and 1.4-1.8 mM (Cl-). The respective maximum flux, J(eff,o)max (nmol/[cm2.s]), for C(o) = 1-25 mM is 0.41-0.51 (HCO3-) and 0.28-0.38 (Cl-), and for C(o) = 1-260 mM 0.39- 0.44 (HCO3-) and 0.27-0.31 (Cl-). The internal half-saturation constant, Ki1/2 mM is: MM fit (C(i) = 6-100 mM, C(o) = 50 mM), 18.0 mM (HCO3-) and 23.8 mM (Cl-); MS fit (C(i) = 6-920 mM, C(o) = 50 mM), 32.0 mM (HCO3-) and 45.1 mM (Cl-). The maximum flux, J(eff,i)max (nmol/[cm2.s]) is: MM fit; 0.50 (HCO3-) and 0.34 (Cl-); MS fit, 0.70 (HCO-3) and 0.50 (Cl-). The half-inhibition constants of the MS fit, Ki, are 393 mM (HCO3-) and 544 mM (Cl-). The MM fit shows that the symmetric half-saturation constant, Ks1/2, is 20.2 (HCO-3) and 23.9 (Cl- ) mM, and J(eff,s)max is 0.51 (HCO3-) and 0.32 (Cl-) nmol/(cm2.s). The MS fit shows that for C = 5-700 mM Ks1/2 is 30.4 nM (HCO3-) and 50.1 mM (Cl-), and Ki is 541 mM (HCO3-) and 392 mM (Cl-).(ABSTRACT TRUNCATED AT 400 WORDS)
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRITTON H. G. PERMEABILITY OF THE HUMAN RED CELL TO LABELLED GLUCOSE. J Physiol. 1964 Jan;170:1–20. doi: 10.1113/jphysiol.1964.sp007310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brahm J. Diffusional water permeability of human erythrocytes and their ghosts. J Gen Physiol. 1982 May;79(5):791–819. doi: 10.1085/jgp.79.5.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brahm J. Temperature-dependent changes of chloride transport kinetics in human red cells. J Gen Physiol. 1977 Sep;70(3):283–306. doi: 10.1085/jgp.70.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brahm J. The physiology of anion transport in red cells. Prog Hematol. 1986;14:1–21. [PubMed] [Google Scholar]
- Brazy P. C., Gunn R. B. Furosemide inhibition of chloride transport in human red blood cells. J Gen Physiol. 1976 Dec;68(6):583–599. doi: 10.1085/jgp.68.6.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalmark M. Effects of halides and bicarbonate on chloride transport in human red blood cells. J Gen Physiol. 1976 Feb;67(2):223–234. doi: 10.1085/jgp.67.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalmark M., Wieth J. O. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. J Physiol. 1972 Aug;224(3):583–610. doi: 10.1113/jphysiol.1972.sp009914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Falke J. J., Kanes K. J., Chan S. I. The kinetic equation for the chloride transport cycle of band 3. A 35Cl and 37Cl NMR study. J Biol Chem. 1985 Aug 15;260(17):9545–9551. [PubMed] [Google Scholar]
- Fröhlich O., Gunn R. B. Erythrocyte anion transport: the kinetics of a single-site obligatory exchange system. Biochim Biophys Acta. 1986 Sep 22;864(2):169–194. doi: 10.1016/0304-4157(86)90010-9. [DOI] [PubMed] [Google Scholar]
- Funder J., Wieth J. O. Chloride transport in human erythrocytes and ghosts: a quantitative comparison. J Physiol. 1976 Nov;262(3):679–698. doi: 10.1113/jphysiol.1976.sp011615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Funder J., Wieth J. O. Trapping of sodium, potassium, sucrose, and albumin in the packed cell column of the hematocrit. Acta Physiol Scand. 1967 Sep;71(1):105–112. doi: 10.1111/j.1748-1716.1967.tb03715.x. [DOI] [PubMed] [Google Scholar]
- Furuya W., Tarshis T., Law F. Y., Knauf P. A. Transmembrane effects of intracellular chloride on the inhibitory potency of extracellular H2DIDS. Evidence for two conformations of the transport site of the human erythrocyte anion exchange protein. J Gen Physiol. 1984 May;83(5):657–681. doi: 10.1085/jgp.83.5.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grygorczyk R., Schwarz W., Passow H. Potential dependence of the "electrically silent" anion exchange across the plasma membrane of Xenopus oocytes mediated by the band-3 protein of mouse red blood cells. J Membr Biol. 1987;99(2):127–136. doi: 10.1007/BF01871232. [DOI] [PubMed] [Google Scholar]
- Gunn R. B., Dalmark M., Tosteson D. C., Wieth J. O. Characteristics of chloride transport in human red blood cells. J Gen Physiol. 1973 Feb;61(2):185–206. doi: 10.1085/jgp.61.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gunn R. B., Fröhlich O. Asymmetry in the mechanism for anion exchange in human red blood cell membranes. Evidence for reciprocating sites that react with one transported anion at a time. J Gen Physiol. 1979 Sep;74(3):351–374. doi: 10.1085/jgp.74.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutknecht J., Bisson M. A., Tosteson F. C. Diffusion of carbon dioxide through lipid bilayer membranes: effects of carbonic anhydrase, bicarbonate, and unstirred layers. J Gen Physiol. 1977 Jun;69(6):779–794. doi: 10.1085/jgp.69.6.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hautmann M., Schnell K. F. Concentration dependence of the chloride selfexchange and homoexchange fluxes in human red cell ghosts. Pflugers Arch. 1985 Oct;405(3):193–201. doi: 10.1007/BF00582560. [DOI] [PubMed] [Google Scholar]
- Hunter M. J. Human erythrocyte anion permeabilities measured under conditions of net charge transfer. J Physiol. 1977 Jun;268(1):35–49. doi: 10.1113/jphysiol.1977.sp011845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janas T., Bjerrum P. J., Brahm J., Wieth J. O. Kinetics of reversible DIDS inhibition of chloride self exchange in human erythrocytes. Am J Physiol. 1989 Oct;257(4 Pt 1):C601–C606. doi: 10.1152/ajpcell.1989.257.4.C601. [DOI] [PubMed] [Google Scholar]
- Jones G. S., Knauf P. A. Mechanism of the increase in cation permeability of human erythrocytes in low-chloride media. Involvement of the anion transport protein capnophorin. J Gen Physiol. 1985 Nov;86(5):721–738. doi: 10.1085/jgp.86.5.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knauf P. A., Brahm J. Functional asymmetry of the anion-exchange protein, capnophorin: effects on substrate and inhibitor binding. Methods Enzymol. 1989;173:432–453. doi: 10.1016/s0076-6879(89)73031-7. [DOI] [PubMed] [Google Scholar]
- Knauf P. A., Fuhrmann G. F., Rothstein S., Rothstein A. The relationship between anion exchange and net anion flow across the human red blood cell membrane. J Gen Physiol. 1977 Mar;69(3):363–386. doi: 10.1085/jgp.69.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knauf P. A., Law F. Y., Tarshis T., Furuya W. Effects of the transport site conformation on the binding of external NAP-taurine to the human erythrocyte anion exchange system. Evidence for intrinsic asymmetry. J Gen Physiol. 1984 May;83(5):683–701. doi: 10.1085/jgp.83.5.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magid E., Turbeck B. O. The rates of the spontaneous hydration of CO2 and the reciprocal reaction in neutral aqueous solutions between 0 degrees and 38 degrees. Biochim Biophys Acta. 1968 Oct 15;165(3):515–524. doi: 10.1016/0304-4165(68)90232-8. [DOI] [PubMed] [Google Scholar]
- Passow H. Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane. Rev Physiol Biochem Pharmacol. 1986;103:61–203. doi: 10.1007/3540153330_2. [DOI] [PubMed] [Google Scholar]
- Schwoch G., Passow H. Preparation and properties of human erythrocyte ghosts. Mol Cell Biochem. 1973 Dec 15;2(2):197–218. doi: 10.1007/BF01795474. [DOI] [PubMed] [Google Scholar]
- Wieth J. O. Bicarbonate exchange through the human red cell membrane determined with [14C] bicarbonate. J Physiol. 1979 Sep;294:521–539. doi: 10.1113/jphysiol.1979.sp012944. [DOI] [PMC free article] [PubMed] [Google Scholar]