Abstract
The mechanism of activation of KCl cotransport has been examined in rabbit red blood cells. Previous work has provided evidence that a net dephosphorylation is required for activation of transport by cell swelling. In the present study okadaic acid, an inhibitor of protein phosphatases, was used to test this idea in more detail. We find that okadaic acid strongly inhibits swelling-stimulated KCl cotransport. The IC50 for okadaic acid is approximately 40 nM, consistent with the involvement of type 1 protein phosphatase in transport activation. N- Ethylmaleimide (NEM) is well known to activate KCl cotransport in cells of normal volume. Okadaic acid, added before NEM, inhibits the activation of transport by NEM, indicating that a dephosphorylation is necessary for the NEM effect. Okadaic acid added after NEM inhibits transport only very slightly. After a brief exposure to NEM and rapid removal of unreacted NEM, KCl cotransport activates with a time delay that is similar to that for swelling activation. Okadaic acid causes a slight increase in the delay time. These findings are all consistent with the idea that NEM activates transport not by a direct action on the transport protein but by altering a phosphorylation- dephosphorylation cycle. The simplest hypothesis that is consistent with the data is that both cell swelling and NEM cause inhibition of a protein kinase. Kinase inhibition causes net dephosphorylation of some key substrate (not necessarily the transport protein); dephosphorylation of this substrate, probably by type 1 protein phosphatase, causes transport activation.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bechtel P. J., Beavo J. A., Krebs E. G. Purification and characterization of catalytic subunit of skeletal muscle adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1977 Apr 25;252(8):2691–2697. [PubMed] [Google Scholar]
- Berkowitz L. R. Loop diuretic and anion modification of NEM-induced K transport in human red blood cells. Am J Physiol. 1990 Apr;258(4 Pt 1):C622–C629. doi: 10.1152/ajpcell.1990.258.4.C622. [DOI] [PubMed] [Google Scholar]
- Brugnara C., Kopin A. S., Bunn H. F., Tosteson D. C. Regulation of cation content and cell volume in hemoglobin erythrocytes from patients with homozygous hemoglobin C disease. J Clin Invest. 1985 May;75(5):1608–1617. doi: 10.1172/JCI111867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brugnara C., Tosteson D. C. Cell volume, K transport, and cell density in human erythrocytes. Am J Physiol. 1987 Mar;252(3 Pt 1):C269–C276. doi: 10.1152/ajpcell.1987.252.3.C269. [DOI] [PubMed] [Google Scholar]
- Brugnara C., Van Ha T., Tosteson D. C. Properties of K+ transport in resealed human erythrocyte ghosts. Am J Physiol. 1988 Sep;255(3 Pt 1):C346–C356. doi: 10.1152/ajpcell.1988.255.3.C346. [DOI] [PubMed] [Google Scholar]
- Brugnara C., Van Ha T., Tosteson D. C. Role of chloride in potassium transport through a K-Cl cotransport system in human red blood cells. Am J Physiol. 1989 May;256(5 Pt 1):C994–1003. doi: 10.1152/ajpcell.1989.256.5.C994. [DOI] [PubMed] [Google Scholar]
- Buhrow S. A., Cohen S., Staros J. V. Affinity labeling of the protein kinase associated with the epidermal growth factor receptor in membrane vesicles from A431 cells. J Biol Chem. 1982 Apr 25;257(8):4019–4022. [PubMed] [Google Scholar]
- Canessa M., Fabry M. E., Blumenfeld N., Nagel R. L. Volume-stimulated, Cl(-)-dependent K+ efflux is highly expressed in young human red cells containing normal hemoglobin or HbS. J Membr Biol. 1987;97(2):97–105. doi: 10.1007/BF01869416. [DOI] [PubMed] [Google Scholar]
- Canessa M., Spalvins A., Nagel R. L. Volume-dependent and NEM-stimulated K+,Cl- transport is elevated in oxygenated SS, SC and CC human red cells. FEBS Lett. 1986 May 5;200(1):197–202. doi: 10.1016/0014-5793(86)80538-5. [DOI] [PubMed] [Google Scholar]
- Cohen P., Holmes C. F., Tsukitani Y. Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci. 1990 Mar;15(3):98–102. doi: 10.1016/0968-0004(90)90192-e. [DOI] [PubMed] [Google Scholar]
- Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
- Deuticke B. Properties and structural basis of simple diffusion pathways in the erythrocyte membrane. Rev Physiol Biochem Pharmacol. 1977;78:1–97. doi: 10.1007/BFb0027721. [DOI] [PubMed] [Google Scholar]
- Dunham P. B., Ellory J. C. Passive potassium transport in low potassium sheep red cells: dependence upon cell volume and chloride. J Physiol. 1981 Sep;318:511–530. doi: 10.1113/jphysiol.1981.sp013881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunham P. B., Logue P. J. Potassium-chloride cotransport in resealed human red cell ghosts. Am J Physiol. 1986 Apr;250(4 Pt 1):C578–C583. doi: 10.1152/ajpcell.1986.250.4.C578. [DOI] [PubMed] [Google Scholar]
- Fairbanks G., Palek J., Dino J. E., Liu P. A. Protein kinases and membrane protein phosphorylation in normal and abnormal human erythrocytes: variation related to mean cell age. Blood. 1983 May;61(5):850–857. [PubMed] [Google Scholar]
- Gorin G., Martic P. A., Doughty G. Kinetics of the reaction of N-ethylmaleimide with cysteine and some congeners. Arch Biochem Biophys. 1966 Sep 9;115(3):593–597. doi: 10.1016/0003-9861(66)90079-8. [DOI] [PubMed] [Google Scholar]
- Inoue Y., Saijoh K., Sumino K. Action of mercurials on activity of partially purified soluble protein kinase C from mice brain. Pharmacol Toxicol. 1988 May;62(5):278–281. doi: 10.1111/j.1600-0773.1988.tb01887.x. [DOI] [PubMed] [Google Scholar]
- Jennings M. L., Schulz R. K. Swelling-activated KCl cotransport in rabbit red cells: flux is determined mainly by cell volume rather than shape. Am J Physiol. 1990 Dec;259(6 Pt 1):C960–C967. doi: 10.1152/ajpcell.1990.259.6.C960. [DOI] [PubMed] [Google Scholar]
- Jennings M. L., al-Rohil N. Kinetics of activation and inactivation of swelling-stimulated K+/Cl- transport. The volume-sensitive parameter is the rate constant for inactivation. J Gen Physiol. 1990 Jun;95(6):1021–1040. doi: 10.1085/jgp.95.6.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaji D. Volume-sensitive K transport in human erythrocytes. J Gen Physiol. 1986 Dec;88(6):719–738. doi: 10.1085/jgp.88.6.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiener P. A., Carroll D., Roth B. J., Westhead E. W. Purification and characterization of a high molecular weight type 1 phosphoprotein phosphatase from the human erythrocyte. J Biol Chem. 1987 Feb 15;262(5):2016–2024. [PubMed] [Google Scholar]
- Kim H. D., Sergeant S., Forte L. R., Sohn D. H., Im J. H. Activation of a Cl-dependent K flux by cAMP in pig red cells. Am J Physiol. 1989 Apr;256(4 Pt 1):C772–C778. doi: 10.1152/ajpcell.1989.256.4.C772. [DOI] [PubMed] [Google Scholar]
- Kregenow F. M. Osmoregulatory salt transporting mechanisms: control of cell volume in anisotonic media. Annu Rev Physiol. 1981;43:493–505. doi: 10.1146/annurev.ph.43.030181.002425. [DOI] [PubMed] [Google Scholar]
- Kregenow F. M. The response of duck erythrocytes to nonhemolytic hypotonic media. Evidence for a volume-controlling mechanism. J Gen Physiol. 1971 Oct;58(4):372–395. doi: 10.1085/jgp.58.4.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEFEVRE P. G., MARSHALL J. K. The atachment of phloretin and analogues to human erythrocytes in connection with inhibition of sugar transport. J Biol Chem. 1959 Nov;234:3022–3026. [PubMed] [Google Scholar]
- Lauf P. K. K+:Cl- cotransport: sulfhydryls, divalent cations, and the mechanism of volume activation in a red cell. J Membr Biol. 1985;88(1):1–13. doi: 10.1007/BF01871208. [DOI] [PubMed] [Google Scholar]
- Lauf P. K., Perkins C. M., Adragna N. C. Cell volume and metabolic dependence of NEM-activated K+-Cl- flux in human red blood cells. Am J Physiol. 1985 Jul;249(1 Pt 1):C124–C128. doi: 10.1152/ajpcell.1985.249.1.C124. [DOI] [PubMed] [Google Scholar]
- Lauf P. K. Thiol-dependent passive K+-Cl- transport in sheep red blood cells. V. Dependence on metabolism. Am J Physiol. 1983 Nov;245(5 Pt 1):C445–C448. doi: 10.1152/ajpcell.1983.245.5.C445. [DOI] [PubMed] [Google Scholar]
- Lauf P. K. Thiol-dependent passive K+Cl- transport in sheep red blood cells: VI. Functional heterogeneity and immunologic identity with volume-stimulated K+(Rb+) fluxes. J Membr Biol. 1984;82(2):167–178. doi: 10.1007/BF01868941. [DOI] [PubMed] [Google Scholar]
- Lauf P. K. Thiol-dependent passive K/Cl transport in sheep red cells: I. Dependence on chloride and external ions. J Membr Biol. 1983;73(3):237–246. doi: 10.1007/BF01870538. [DOI] [PubMed] [Google Scholar]
- Lauf P. K. Thiol-dependent passive K/Cl transport in sheep red cells: VII. Volume-independent freezing by iodoacetamide, and sulfhydryl group heterogeneity. J Membr Biol. 1987;98(3):237–246. doi: 10.1007/BF01871186. [DOI] [PubMed] [Google Scholar]
- Ling E., Sapirstein V. Phorbol ester stimulates the phosphorylation of rabbit erythrocyte band 4.1. Biochem Biophys Res Commun. 1984 Apr 16;120(1):291–298. doi: 10.1016/0006-291x(84)91447-5. [DOI] [PubMed] [Google Scholar]
- Logue P., Anderson C., Kanik C., Farquharson B., Dunham P. Passive potassium transport in LK sheep red cells. Modification by N-ethyl maleimide. J Gen Physiol. 1983 Jun;81(6):861–885. doi: 10.1085/jgp.81.6.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McManus T. J., Haas M., Starke L. C., Lytle C. Y. The duck red cell model of volume-sensitive chloride-dependent cation transport. Ann N Y Acad Sci. 1985;456:183–186. doi: 10.1111/j.1749-6632.1985.tb14863.x. [DOI] [PubMed] [Google Scholar]
- Parker J. C., Glosson P. S. Interactions of sodium-proton exchange mechanism in dog red blood cells with N-phenylmaleimide. Am J Physiol. 1987 Jul;253(1 Pt 1):C60–C65. doi: 10.1152/ajpcell.1987.253.1.C60. [DOI] [PubMed] [Google Scholar]
- Parker J. C. Glutaraldehyde fixation of sodium transport in dog red blood cells. J Gen Physiol. 1984 Nov;84(5):789–803. doi: 10.1085/jgp.84.5.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs J. R. Volume-sensitive K influx in human red cell ghosts. J Gen Physiol. 1988 Nov;92(5):685–711. doi: 10.1085/jgp.92.5.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheerin H. E., Snyder L. M., Fairbanks G. Cation transport in oxidant-stressed human erythrocytes: heightened N-ethylmaleimide activation of passive K+ influx after mild peroxidation. Biochim Biophys Acta. 1989 Jul 24;983(1):65–76. doi: 10.1016/0005-2736(89)90381-7. [DOI] [PubMed] [Google Scholar]
- Suzuki H., Kishio N., Morozumi K., Ichimori K., Mukouyama E. B. Specific phosphorylation of pig liver initiation factor eIF-2 by the N-ethylmaleimide-treated hemin-controlled translational inhibitor. J Biochem. 1985 Apr;97(4):1061–1066. doi: 10.1093/oxfordjournals.jbchem.a135148. [DOI] [PubMed] [Google Scholar]
- Tung H. Y., Reed L. J. Purification and characterization of protein phosphatase 1I activating kinase from bovine brain cytosolic and particulate fractions. J Biol Chem. 1989 Feb 15;264(5):2985–2990. [PubMed] [Google Scholar]
- Wilden P. A., Boyle T. R., Swanson M. L., Sweet L. J., Pessin J. E. Alteration of intramolecular disulfides in insulin receptor/kinase by insulin and dithiothreitol: insulin potentiates the apparent dithiothreitol-dependent subunit reduction of insulin receptor. Biochemistry. 1986 Jul 29;25(15):4381–4388. doi: 10.1021/bi00363a031. [DOI] [PubMed] [Google Scholar]
- al-Rohil N., Jennings M. L. Volume-dependent K+ transport in rabbit red blood cells comparison with oxygenated human SS cells. Am J Physiol. 1989 Jul;257(1 Pt 1):C114–C121. doi: 10.1152/ajpcell.1989.257.1.C114. [DOI] [PubMed] [Google Scholar]