Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1991 Apr 1;97(4):667–686. doi: 10.1085/jgp.97.4.667

Effects of changes in mucosal solution Cl- or K+ concentration on cell water volume of Necturus gallbladder epithelium

PMCID: PMC2216495  PMID: 1647437

Abstract

An electrophysiologic technique was used to measure changes in cell water volume in response to isosmotic luminal solution ion replacement. Intracellular Cl- activity (aCl-i) was measured and net flux determined from the changes in volume and activity. Reduction of luminal solution [Cl-] from 98 to 10 mM (Cl- replaced with cyclamate) resulted in a large fall in aCl-i with no significant change in cell water volume. Elevation of luminal solution [K+] from 2.5 to 83.5 mM (K+ replaced Na+) caused a small increase in aCl-i with no change in cell water volume. Exposure of the Necturus gallbladder epithelium to agents that increase intracellular cAMP levels (forskolin and/or theophylline) induces an apical membrane electrodiffusive Cl- permeability accompanied by a fall in aCl-i and cell shrinkage. In stimulated tissues, reduction of luminal solution [Cl-] resulted in a large fall in aCl-i and rapid cell shrinkage, whereas elevation of luminal solution [K+] caused a large, rapid cell swelling with no significant change in aCl-i. The changes in cell water volume of stimulated tissues elicited by lowering luminal solution [Cl-] or by elevating luminal solution [K+] were reduced by 60 and 70%, respectively, by addition of tetraethylammonium (TEA+) to the luminal bathing solution. From these results, we conclude that: (a) In control tissues, the fall in aCl-i upon reducing luminal solution [Cl-], without concomitant cell shrinkage, indicates that the Cl- entry mechanism is electroneutral (Cl- /HCO3-) exchange. (b) Also in control tissues, the small increase in aCl-i upon elevating luminal solution [K+] is consistent with the recent demonstration of a basolateral Cl- conductance. (c) The cell shrinkage elicited by elevation of intracellular cAMP levels results from conductive loss of Cl- (and probably K+). (d) Elevation of cAMP inhibits apical membrane Cl-/HCO-3-exchange activity by 70%. (e) The cell shrinkage in response to the reduction of mucosal solution [Cl-] in stimulated tissues results from net K+ and Cl- efflux via parallel electrodiffusive pathways. (f) A major fraction of the K+ flux is via a TEA(+)-sensitive apical membrane K+ channel.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenberg G., Copello J., Cotton C., Dawson K., Segal Y., Wehner F., Reuss L. Electrophysiological methods for studying ion and water transport in Necturus gall bladder epithelium. Methods Enzymol. 1990;192:650–683. doi: 10.1016/0076-6879(90)92101-i. [DOI] [PubMed] [Google Scholar]
  2. Alvarez-Leefmans F. J., Gamiño S. M., Giraldez F., Noguerón I. Intracellular chloride regulation in amphibian dorsal root ganglion neurones studied with ion-selective microelectrodes. J Physiol. 1988 Dec;406:225–246. doi: 10.1113/jphysiol.1988.sp017378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baerentsen H., Giraldez F., Zeuthen T. Influx mechanisms for Na+ and Cl- across the brush border membrane of leaky epithelia: a model and microelectrode study. J Membr Biol. 1983;75(3):205–218. doi: 10.1007/BF01871951. [DOI] [PubMed] [Google Scholar]
  4. Cotton C. U., Weinstein A. M., Reuss L. Osmotic water permeability of Necturus gallbladder epithelium. J Gen Physiol. 1989 Apr;93(4):649–679. doi: 10.1085/jgp.93.4.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davis C. W., Finn A. L. Effects of mucosal sodium removal on cell volume in Necturus gallbladder epithelium. Am J Physiol. 1985 Sep;249(3 Pt 1):C304–C312. doi: 10.1152/ajpcell.1985.249.3.C304. [DOI] [PubMed] [Google Scholar]
  6. Davis C. W., Finn A. L. Potassium-induced cell swelling in Necturus gallbladder epithelium. Am J Physiol. 1988 May;254(5 Pt 1):C643–C650. doi: 10.1152/ajpcell.1988.254.5.C643. [DOI] [PubMed] [Google Scholar]
  7. Ericson A. C., Spring K. R. Coupled NaCl entry into Necturus gallbladder epithelial cells. Am J Physiol. 1982 Sep;243(3):C140–C145. doi: 10.1152/ajpcell.1982.243.3.C140. [DOI] [PubMed] [Google Scholar]
  8. Garcia-Diaz J. F., Armstrong W. M. The steady-state relationship between sodium and chloride transmembrane electrochemical potential differences in Necturus gallbladder. J Membr Biol. 1980 Aug 7;55(3):213–222. doi: 10.1007/BF01869462. [DOI] [PubMed] [Google Scholar]
  9. Giraldez F. Active sodium transport and fluid secretion in the gall-bladder epithelium of Necturus. J Physiol. 1984 Mar;348:431–455. doi: 10.1113/jphysiol.1984.sp015118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holz R., Finkelstein A. The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J Gen Physiol. 1970 Jul;56(1):125–145. doi: 10.1085/jgp.56.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Larson M., Spring K. R. Bumetanide inhibition of NaCl transport by Necturus gallbladder. J Membr Biol. 1983;74(2):123–129. doi: 10.1007/BF01870501. [DOI] [PubMed] [Google Scholar]
  13. O'Grady S. M., Wolters P. J., Hildebrand K., Brown D. R. Regulation of ion transport in porcine gallbladder: effects of VIP and norepinephrine. Am J Physiol. 1989 Jul;257(1 Pt 1):C52–C57. doi: 10.1152/ajpcell.1989.257.1.C52. [DOI] [PubMed] [Google Scholar]
  14. Persson B. E., Spring K. R. Gallbladder epithelial cell hydraulic water permeability and volume regulation. J Gen Physiol. 1982 Mar;79(3):481–505. doi: 10.1085/jgp.79.3.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Petersen K. U., Reuss L. Cyclic AMP-induced chloride permeability in the apical membrane of Necturus gallbladder epithelium. J Gen Physiol. 1983 May;81(5):705–729. doi: 10.1085/jgp.81.5.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reuss L. Changes in cell volume measured with an electrophysiologic technique. Proc Natl Acad Sci U S A. 1985 Sep;82(17):6014–6018. doi: 10.1073/pnas.82.17.6014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reuss L., Costantin J. L. Cl-/HCO3- exchange at the apical membrane of Necturus gallbladder. J Gen Physiol. 1984 Jun;83(6):801–818. doi: 10.1085/jgp.83.6.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reuss L., Finn A. L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. II. Ionic permeability of the apical cell membrane. J Membr Biol. 1975 Dec 4;25(1-2):141–161. doi: 10.1007/BF01868572. [DOI] [PubMed] [Google Scholar]
  19. Reuss L., Grady T. P. Effects of external sodium and cell membrane potential on intracellular chloride activity in gallbladder epithelium. J Membr Biol. 1979 Dec 12;51(1):15–31. doi: 10.1007/BF01869341. [DOI] [PubMed] [Google Scholar]
  20. Reuss L. Independence of apical membrane Na+ and Cl- entry in Necturus gallbladder epithelium. J Gen Physiol. 1984 Sep;84(3):423–445. doi: 10.1085/jgp.84.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reuss L. Ion transport across gallbladder epithelium. Physiol Rev. 1989 Apr;69(2):503–545. doi: 10.1152/physrev.1989.69.2.503. [DOI] [PubMed] [Google Scholar]
  22. Reuss L., Petersen K. U. Cyclic AMP inhibits Na+/H+ exchange at the apical membrane of Necturus gallbladder epithelium. J Gen Physiol. 1985 Mar;85(3):409–429. doi: 10.1085/jgp.85.3.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reuss L., Stoddard J. S. Role of H+ and HCO3- in salt transport in gallbladder epithelium. Annu Rev Physiol. 1987;49:35–49. doi: 10.1146/annurev.ph.49.030187.000343. [DOI] [PubMed] [Google Scholar]
  24. Reuss L., Weinman S. A. Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium. J Membr Biol. 1979 Sep 14;49(4):345–362. doi: 10.1007/BF01868991. [DOI] [PubMed] [Google Scholar]
  25. Segal Y., Reuss L. Ba2+, TEA+, and quinine effects on apical membrane K+ conductance and maxi K+ channels in gallbladder epithelium. Am J Physiol. 1990 Jul;259(1 Pt 1):C56–C68. doi: 10.1152/ajpcell.1990.259.1.C56. [DOI] [PubMed] [Google Scholar]
  26. Segal Y., Reuss L. Maxi K+ channels and their relationship to the apical membrane conductance in Necturus gallbladder epithelium. J Gen Physiol. 1990 May;95(5):791–818. doi: 10.1085/jgp.95.5.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Spring K. R., Ericson A. C. Epithelial cell volume modulation and regulation. J Membr Biol. 1982;69(3):167–176. doi: 10.1007/BF01870396. [DOI] [PubMed] [Google Scholar]
  28. Spring K. R., Hope A. Fluid transport and the dimensions of cells and interspaces of living Necturus gallbladder. J Gen Physiol. 1979 Mar;73(3):287–305. doi: 10.1085/jgp.73.3.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stoddard J. S., Reuss L. Dependence of cell membrane conductances on bathing solution HCO3-/CO2 in Necturus gallbladder. J Membr Biol. 1988 May;102(2):163–174. doi: 10.1007/BF01870454. [DOI] [PubMed] [Google Scholar]
  30. Stoddard J. S., Reuss L. Electrophysiological effects of mucosal Cl- removal in Necturus gallbladder epithelium. Am J Physiol. 1989 Sep;257(3 Pt 1):C568–C578. doi: 10.1152/ajpcell.1989.257.3.C568. [DOI] [PubMed] [Google Scholar]
  31. Stoddard J. S., Reuss L. Voltage- and time dependence of apical membrane conductance during current clamp in Necturus gallbladder epithelium. J Membr Biol. 1988 Jul;103(2):191–204. doi: 10.1007/BF01870949. [DOI] [PubMed] [Google Scholar]
  32. Weinman S. A., Reuss L. Na+-H+ exchange and Na+ entry across the apical membrane of Necturus gallbladder. J Gen Physiol. 1984 Jan;83(1):57–74. doi: 10.1085/jgp.83.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wood J. R., Svanvik J. Gall-bladder water and electrolyte transport and its regulation. Gut. 1983 Jun;24(6):579–593. doi: 10.1136/gut.24.6.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. van Os C. H., Slegers J. F. The electrical potential profile of gallbladder epithelium. J Membr Biol. 1975 Dec 4;24(3-4):341–363. doi: 10.1007/BF01868631. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES