Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1991 Apr 1;97(4):725–747. doi: 10.1085/jgp.97.4.725

Current recording from sensory cilia of olfactory receptor cells in situ. II. Role of mucosal Na+, K+, and Ca2+ ions

PMCID: PMC2216496  PMID: 2056306

Abstract

Action potential-driven current transients were recorded from sensory cilia and used to monitor the spike frequency generated by olfactory receptor neurons, which were maintained in their natural position in the sensory epithelium. Both basal and messenger-induced activities, as elicited with forskolin or cyclic nucleotides, were dependent on the presence of mucosal Na+. The spike rate decreased to approximately 20% when mucosal Na+ was lowered from 120 to 60 mM (replaced by N-methyl-D- glucamine+), without clear changes in amplitude and duration of the recorded action potential-driven transients. Mucosal Ca2+ and Mg2+ blocked spike discharge completely when increased from 1 to 10 mM in Ringer solution. Lowering mucosal Ca2+ below 1 mM increased the spike rate. These results can be explained by the presence of a cyclic nucleotide-dependent, Ca(2+)-sensitive cation conductance, which allows a depolarizing Na+ inward current to flow through the apical membrane of in situ receptor cells. A conductance with these properties, thought to provide the receptor current, was first described for isolated olfactory cells by Nakamura and Gold (1987. Nature (Lond.). 325:442- 444). The forskolin-stimulated spike rate decreased when l-cis- diltiazem, a known blocker of the cyclic nucleotide-dependent receptor current, was added to the mucosal solution. Spike rate also decreased when the mucosal K+ concentration was lowered. Mucosal Ba2+ and 4- aminopyridine, presumably by means of cell depolarization, rapidly increased the spike rate. This suggests the presence of apical K+ channels that render the receptor cells sensitive to the K+ concentration of the olfactory mucus. With a slower time course, mucosal Ba2+ and 4-aminopyridine decreased the amplitude and caused rectification of the fast current transients (prolongation of action potentials). Abolishment of the apical Na+ current (by removal of mucosal Na+), as indicated by a strong decrease in spike rate, could be counteracted by adding 10 mM Ba2+ or 1 mM 4-aminopyridine to the mucosal solution, which re-established spiking. Similarly, blockage of the apical cation conductance with 10 mM Ca could be counteracted by adding 10 mM Ba2+ or by raising the mucosal K+ concentration. Thus mucosal concentrations of Na+, K+, and Ca2+ will jointly affect the sensitivity of odor detection.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anholt R. R., Aebi U., Snyder S. H. A partially purified preparation of isolated chemosensory cilia from the olfactory epithelium of the bullfrog, Rana catesbeiana. J Neurosci. 1986 Jul;6(7):1962–1969. doi: 10.1523/JNEUROSCI.06-07-01962.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Avenet P., Hofmann F., Lindemann B. Transduction in taste receptor cells requires cAMP-dependent protein kinase. Nature. 1988 Jan 28;331(6154):351–354. doi: 10.1038/331351a0. [DOI] [PubMed] [Google Scholar]
  3. Boat T. F., Cheng P. W. Biochemistry of airway mucus secretions. Fed Proc. 1980 Nov;39(13):3067–3074. [PubMed] [Google Scholar]
  4. Boekhoff I., Tareilus E., Strotmann J., Breer H. Rapid activation of alternative second messenger pathways in olfactory cilia from rats by different odorants. EMBO J. 1990 Aug;9(8):2453–2458. doi: 10.1002/j.1460-2075.1990.tb07422.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Breer H., Boekhoff I., Tareilus E. Rapid kinetics of second messenger formation in olfactory transduction. Nature. 1990 May 3;345(6270):65–68. doi: 10.1038/345065a0. [DOI] [PubMed] [Google Scholar]
  6. Brown D. M-currents: an update. Trends Neurosci. 1988 Jul;11(7):294–299. doi: 10.1016/0166-2236(88)90089-6. [DOI] [PubMed] [Google Scholar]
  7. Firestein S., Werblin F. Odor-induced membrane currents in vertebrate-olfactory receptor neurons. Science. 1989 Apr 7;244(4900):79–82. doi: 10.1126/science.2704991. [DOI] [PubMed] [Google Scholar]
  8. Frings S., Lindemann B. Current recording from sensory cilia of olfactory receptor cells in situ. I. The neuronal response to cyclic nucleotides. J Gen Physiol. 1991 Jan;97(1):1–16. doi: 10.1085/jgp.97.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frings S., Lindemann B. Odorant response of isolated olfactory receptor cells is blocked by amiloride. J Membr Biol. 1988 Nov;105(3):233–243. doi: 10.1007/BF01871000. [DOI] [PubMed] [Google Scholar]
  10. Frings S., Lindemann B. Single unit recording from olfactory cilia. Biophys J. 1990 May;57(5):1091–1094. doi: 10.1016/S0006-3495(90)82627-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Getchell T. V. Functional properties of vertebrate olfactory receptor neurons. Physiol Rev. 1986 Jul;66(3):772–818. doi: 10.1152/physrev.1986.66.3.772. [DOI] [PubMed] [Google Scholar]
  12. Getchell T. V. Unitary responses in frog olfactory epithelium to sterically related molecules at low concentrations. J Gen Physiol. 1974 Aug;64(2):241–261. [PMC free article] [PubMed] [Google Scholar]
  13. Joshi H., Getchell M. L., Zielinski B., Getchell T. V. Spectrophotometric determination of cation concentrations in olfactory mucus. Neurosci Lett. 1987 Dec 4;82(3):321–326. doi: 10.1016/0304-3940(87)90276-x. [DOI] [PubMed] [Google Scholar]
  14. Kolesnikov S. S., Zhainazarov A. B., Kosolapov A. V. Cyclic nucleotide-activated channels in the frog olfactory receptor plasma membrane. FEBS Lett. 1990 Jun 18;266(1-2):96–98. doi: 10.1016/0014-5793(90)81515-p. [DOI] [PubMed] [Google Scholar]
  15. Kurahashi T. Activation by odorants of cation-selective conductance in the olfactory receptor cell isolated from the newt. J Physiol. 1989 Dec;419:177–192. doi: 10.1113/jphysiol.1989.sp017868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kurahashi T., Shibuya T. Ca2(+)-dependent adaptive properties in the solitary olfactory receptor cell of the newt. Brain Res. 1990 May 7;515(1-2):261–268. doi: 10.1016/0006-8993(90)90605-b. [DOI] [PubMed] [Google Scholar]
  17. Labarca P., Bacigalupo J. Ion channels from chemosensory olfactory neurons. J Bioenerg Biomembr. 1988 Oct;20(5):551–569. doi: 10.1007/BF00768919. [DOI] [PubMed] [Google Scholar]
  18. Labarca P., Simon S. A., Anholt R. R. Activation by odorants of a multistate cation channel from olfactory cilia. Proc Natl Acad Sci U S A. 1988 Feb;85(3):944–947. doi: 10.1073/pnas.85.3.944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laurenza A., Sutkowski E. M., Seamon K. B. Forskolin: a specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action? Trends Pharmacol Sci. 1989 Nov;10(11):442–447. doi: 10.1016/S0165-6147(89)80008-2. [DOI] [PubMed] [Google Scholar]
  20. Lorin M. I., Gaerlan P. F., Mandel I. D. Quantitative composition of nasal secretions in normal subjects. J Lab Clin Med. 1972 Aug;80(2):275–281. [PubMed] [Google Scholar]
  21. Maue R. A., Dionne V. E. Patch-clamp studies of isolated mouse olfactory receptor neurons. J Gen Physiol. 1987 Jul;90(1):95–125. doi: 10.1085/jgp.90.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nakamura T., Gold G. H. A cyclic nucleotide-gated conductance in olfactory receptor cilia. 1987 Jan 29-Feb 4Nature. 325(6103):442–444. doi: 10.1038/325442a0. [DOI] [PubMed] [Google Scholar]
  23. OTTOSON D. Analysis of the electrical activity of the olfactory epithelium. Acta Physiol Scand Suppl. 1955;35(122):1–83. [PubMed] [Google Scholar]
  24. Persaud K. C., DeSimone J. A., Getchell M. L., Heck G. L., Getchell T. V. Ion transport across the frog olfactory mucosa: the basal and odorant-stimulated states. Biochim Biophys Acta. 1987 Aug 7;902(1):65–79. doi: 10.1016/0005-2736(87)90136-2. [DOI] [PubMed] [Google Scholar]
  25. Persaud K. C., Heck G. L., DeSimone S. K., Getchell T. V., DeSimone J. A. Ion transport across the frog olfactory mucosa: the action of cyclic nucleotides on the basal and odorant-stimulated states. Biochim Biophys Acta. 1988 Sep 15;944(1):49–62. doi: 10.1016/0005-2736(88)90315-x. [DOI] [PubMed] [Google Scholar]
  26. Restrepo D., Miyamoto T., Bryant B. P., Teeter J. H. Odor stimuli trigger influx of calcium into olfactory neurons of the channel catfish. Science. 1990 Sep 7;249(4973):1166–1168. doi: 10.1126/science.2168580. [DOI] [PubMed] [Google Scholar]
  27. Stern J. H., Kaupp U. B., MacLeish P. R. Control of the light-regulated current in rod photoreceptors by cyclic GMP, calcium, and l-cis-diltiazem. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1163–1167. doi: 10.1073/pnas.83.4.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. TUCKER D. Physical variables in the olfactory stimulation process. J Gen Physiol. 1963 Jan;46:453–489. doi: 10.1085/jgp.46.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Takagi S. F., Kitamura H., Imai K., Takeuchi H. Further studies on the roles of sodium and potassium in the generation of the electro-olfactogram. Effects of mono- , di- , and trivalent cations. J Gen Physiol. 1969 Jan;53(1):115–130. doi: 10.1085/jgp.53.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Trotier D. A patch-clamp analysis of membrane currents in salamander olfactory receptor cells. Pflugers Arch. 1986 Dec;407(6):589–595. doi: 10.1007/BF00582636. [DOI] [PubMed] [Google Scholar]
  31. Trotier D., MacLeod P. Intracellular recordings from salamander olfactory receptor cells. Brain Res. 1983 Jun 6;268(2):225–237. doi: 10.1016/0006-8993(83)90488-2. [DOI] [PubMed] [Google Scholar]
  32. Trotier D., MacLeod P. Intracellular recordings from salamander olfactory supporting cells. Brain Res. 1986 May 28;374(2):205–211. doi: 10.1016/0006-8993(86)90413-0. [DOI] [PubMed] [Google Scholar]
  33. Tucker D., Shibuya T. A physiologic and pharmacologic study of olfactory receptors. Cold Spring Harb Symp Quant Biol. 1965;30:207–215. doi: 10.1101/sqb.1965.030.01.023. [DOI] [PubMed] [Google Scholar]
  34. Vodyanoy V., Murphy R. B. Single-channel fluctuations in bimolecular lipid membranes induced by rat olfactory epithelial homogenates. Science. 1983 May 13;220(4598):717–719. doi: 10.1126/science.6301014. [DOI] [PubMed] [Google Scholar]
  35. Winegar B. D., Rosick E. R., Schafer R. Calcium and olfactory transduction. Comp Biochem Physiol A Comp Physiol. 1988;91(2):309–315. doi: 10.1016/0300-9629(88)90422-7. [DOI] [PubMed] [Google Scholar]
  36. Yoshii K., Kurihara K. Role of cations in olfactory reception. Brain Res. 1983 Sep 12;274(2):239–248. doi: 10.1016/0006-8993(83)90701-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES