Abstract
We have compared the response of proton and water transport to oxytocin treatment in isolated frog skin and urinary bladder epithelia to provide further insights into the nature of water flow and H+ flux across individual apical and basolateral cell membranes. In isolated spontaneous sodium-transporting frog skin epithelia, lowering the pH of the apical solution from 7.4 to 6.4, 5.5, or 4.5 produced a fall in pHi in principal cells which was completely blocked by amiloride (50 microM), indicating that apical Na+ channels are permeable to protons. When sodium transport was blocked by amiloride, the H+ permeability of the apical membranes of principal cells was negligible but increased dramatically after treatment with antidiuretic hormone (ADH). In the latter condition, lowering the pH of the apical solution caused a voltage-dependent intracellular acidification, accompanied by membrane depolarization, and an increase in membrane conductance and transepithelial current. These effects were inhibited by adding Hg2+ (100 microM) or dicyclohexylcarbodiimide (DCCD, 10(-5) M) to the apical bath. Net titratable H+ flux across frog skin was increased from 30 +/- 8 to 115 +/- 18 neq.h-1.cm-2 (n = 8) after oxytocin treatment (at apical pH 5.5 and serosal pH 7.4) and was completely inhibited by DCCD (10(-5) M). The basolateral membranes of the principal cells in frog skin epithelium were found to be spontaneously permeable to H+ and passive electrogenic H+ transport across this membrane was not affected by oxytocin. Lowering the pH of the basolateral bathing solution (pHb) produced an intracellular acidification and membrane depolarization (and an increase in conductance when the normal dominant K+ conductance of this membrane was abolished by Ba2+ 1 mM). These effects of low pHb were blocked by micromolar concentrations of heavy metals (Zn2+, Ni2+, Co2+, Cd2+, and Hg2+). Lowering pHb in the presence of oxytocin (50 mU/ml) produced a transepithelial current (3 microA.cm-2 at pHb 5.5) which was blocked by 100 microM of Hg2+, Zn2+, or Ni2+ at the basolateral side, and by DCCD (10(-5) M) or Hg2+ (100 microM) from the apical side. The net hydroosmotic water flux (JH2O) induced by oxytocin in frog bladder sacs was blocked by inhibitors of H(+)-adenosine triphosphatase (ATPase). Diethylstilbestrol (DES 10(-5) M), oligomycin (10(-8) M), and DCCD (10(-5) M) prevented JH2O when present in the lumen. These effects cannot be attributed to inhibition of metabolism since cyanide (10(-4) M), or 2-deoxyglucose (10(-3) M) had no effect on JH2O.(ABSTRACT TRUNCATED AT 400 WORDS)
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aboulafia J., Lacaz-Vieira F. Hydrosmotic salt effect in toad skin: urea permeability and glutaraldehyde fixation of water channels. J Membr Biol. 1985;87(3):249–252. doi: 10.1007/BF01871225. [DOI] [PubMed] [Google Scholar]
- Ait-Mohamed A. K., Marsy S., Barlet C., Khadouri C., Doucet A. Characterization of N-ethylmaleimide-sensitive proton pump in the rat kidney. Localization along the nephron. J Biol Chem. 1986 Sep 25;261(27):12526–12533. [PubMed] [Google Scholar]
- Al-Awqati Q., Gluck S., Reeves W., Cannon C. Regulation of proton transport in urinary epithelia. J Exp Biol. 1983 Sep;106:135–141. doi: 10.1242/jeb.106.1.135. [DOI] [PubMed] [Google Scholar]
- Ammann D., Lanter F., Steiner R. A., Schulthess P., Shijo Y., Simon W. Neutral carrier based hydrogen ion selective microelectrode for extra- and intracellular studies. Anal Chem. 1981 Dec;53(14):2267–2269. doi: 10.1021/ac00237a031. [DOI] [PubMed] [Google Scholar]
- Beauwens R., Crabbé J., Rentmeesters M. Effects of vanadate on the functional properties of the isolated toad bladder. J Physiol. 1981 Jan;310:293–305. doi: 10.1113/jphysiol.1981.sp013550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bentley P. J. Mechanism of action of neurohypophysial hormones: actions of manganese and zinc on the permeability of the toad bladder. J Endocrinol. 1967 Dec;39(4):493–506. doi: 10.1677/joe.0.0390493. [DOI] [PubMed] [Google Scholar]
- Biagi B. A., Sohtell M. pH sensitivity of the basolateral membrane of the rabbit proximal tubule. Am J Physiol. 1986 Feb;250(2 Pt 2):F261–F266. doi: 10.1152/ajprenal.1986.250.2.F261. [DOI] [PubMed] [Google Scholar]
- Brem A. S., Eich E., Pearl M., Taylor A. Anion transport inhibitors: effects on water and sodium transport in the toad urinary bladder. Am J Physiol. 1985 Apr;248(4 Pt 2):F594–F601. doi: 10.1152/ajprenal.1985.248.4.F594. [DOI] [PubMed] [Google Scholar]
- Brem A. S., Pacholski M., Lawler R. G. Fluctuations in intracellular pH associated with vasopressin stimulation. Am J Physiol. 1986 Nov;251(5 Pt 2):F897–F903. doi: 10.1152/ajprenal.1986.251.5.F897. [DOI] [PubMed] [Google Scholar]
- Brown D., Gluck S., Hartwig J. Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+ATPase. J Cell Biol. 1987 Oct;105(4):1637–1648. doi: 10.1083/jcb.105.4.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burckhardt B. C., Frömter E. Evidence for OH-/H+ permeation across the peritubular cell membrane of rat renal proximal tubule in HCO3(-)-free solutions. Pflugers Arch. 1987 Jun;409(1-2):132–137. doi: 10.1007/BF00584760. [DOI] [PubMed] [Google Scholar]
- Carvounis C. P., Levine S. D., Hays R. M. pH-Dependence of water and solute transport in toad urinary bladder. Kidney Int. 1979 May;15(5):513–519. doi: 10.1038/ki.1979.66. [DOI] [PubMed] [Google Scholar]
- Chevalier J., Bourguet J., Hugon J. S. Membrane associated particles: distribution in frog urinary bladder epithelium at rest and after oxytocin treatment. Cell Tissue Res. 1974;152(2):129–140. doi: 10.1007/BF00224690. [DOI] [PubMed] [Google Scholar]
- Civan M. M., Cragoe E. J., Jr, Peterson-Yantorno K. Intracellular pH in frog skin: effects of Na+, volume, and cAMP. Am J Physiol. 1988 Jul;255(1 Pt 2):F126–F134. doi: 10.1152/ajprenal.1988.255.1.F126. [DOI] [PubMed] [Google Scholar]
- Eggena P. Effect of glutaraldehyde on hydrosmotic response of toad bladder to vasopressin. Am J Physiol. 1983 Jan;244(1):C37–C43. doi: 10.1152/ajpcell.1983.244.1.C37. [DOI] [PubMed] [Google Scholar]
- Ehrenfeld J., Garcia-Romeu F., Harvey B. J. Electrogenic active proton pump in Rana esculenta skin and its role in sodium ion transport. J Physiol. 1985 Feb;359:331–355. doi: 10.1113/jphysiol.1985.sp015588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehrenfeld J., Lacoste I., Harvey B. J. The key role of the mitochondria-rich cell in Na+ and H+ transport across the frog skin epithelium. Pflugers Arch. 1989 May;414(1):59–67. doi: 10.1007/BF00585627. [DOI] [PubMed] [Google Scholar]
- Erlij D., Van Driessche W., De Wolf I. Oxytocin stimulates the apical K+ conductance in frog skin. Pflugers Arch. 1986 Dec;407(6):602–606. doi: 10.1007/BF00582638. [DOI] [PubMed] [Google Scholar]
- Fanestil D. D. Vanadate: non-selective inhibition of transepithelial transport of Na+, H+ and water. Experientia. 1980 Sep 15;36(9):1045–1046. doi: 10.1007/BF01965959. [DOI] [PubMed] [Google Scholar]
- Forgac M. Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev. 1989 Jul;69(3):765–796. doi: 10.1152/physrev.1989.69.3.765. [DOI] [PubMed] [Google Scholar]
- Gluck S., Al-Awqati Q. Vasopressin increases water permeability in inducing pores. Nature. 1980 Apr 17;284(5757):631–632. doi: 10.1038/284631a0. [DOI] [PubMed] [Google Scholar]
- Handler J. S. Antidiuretic hormone moves membranes. Am J Physiol. 1988 Sep;255(3 Pt 2):F375–F382. doi: 10.1152/ajprenal.1988.255.3.F375. [DOI] [PubMed] [Google Scholar]
- Hardy M. A. Microfilaments and the effects of antidiuretic hormone on water permeability. Am J Physiol. 1985 Jan;248(1 Pt 1):C183–C185. doi: 10.1152/ajpcell.1985.248.1.C183. [DOI] [PubMed] [Google Scholar]
- Harris H. W., Jr, Handler J. S. The role of membrane turnover in the water permeability response to antidiuretic hormone. J Membr Biol. 1988 Aug;103(3):207–216. doi: 10.1007/BF01993980. [DOI] [PubMed] [Google Scholar]
- Harris H. W., Jr, Kikeri D., Janoshazi A., Solomon A. K., Zeidel M. L. High proton flux through membranes containing antidiuretic hormone water channels. Am J Physiol. 1990 Aug;259(2 Pt 2):F366–F371. doi: 10.1152/ajprenal.1990.259.2.F366. [DOI] [PubMed] [Google Scholar]
- Harris H. W., Jr, Murphy H. R., Willingham M. C., Handler J. S. Isolation and characterization of specialized regions of toad urinary bladder apical plasma membrane involved in the water permeability response to antidiuretic hormone. J Membr Biol. 1987;96(2):175–186. doi: 10.1007/BF01869243. [DOI] [PubMed] [Google Scholar]
- Harris H. W., Jr, Wade J. B., Handler J. S. Identification of specific apical membrane polypeptides associated with the antidiuretic hormone-elicited water permeability increase in the toad urinary bladder. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1942–1946. doi: 10.1073/pnas.85.6.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harvey B. J., Ehrenfeld J. Epithelial pH and ion transport regulation by proton pumps and exchangers. Ciba Found Symp. 1988;139:139–164. doi: 10.1002/9780470513699.ch9. [DOI] [PubMed] [Google Scholar]
- Harvey B. J., Ehrenfeld J. Regulation of intracellular sodium and pH by the electrogenic H+ pump in frog skin. Pflugers Arch. 1986 Apr;406(4):362–366. doi: 10.1007/BF00590937. [DOI] [PubMed] [Google Scholar]
- Harvey B. J., Ehrenfeld J. Role of Na+/H+ exchange in the control of intracellular pH and cell membrane conductances in frog skin epithelium. J Gen Physiol. 1988 Dec;92(6):793–810. doi: 10.1085/jgp.92.6.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harvey B. J., Kernan R. P. Sodium-selective micro-electrode study of apical permeability in frog skin: effects of sodium, amiloride and ouabain. J Physiol. 1984 Nov;356:359–374. doi: 10.1113/jphysiol.1984.sp015470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harvey B. J., Thomas S. R., Ehrenfeld J. Intracellular pH controls cell membrane Na+ and K+ conductances and transport in frog skin epithelium. J Gen Physiol. 1988 Dec;92(6):767–791. doi: 10.1085/jgp.92.6.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ibarra C., Ripoche P., Bourguet J. Effect of mercurial compounds on net water transport and intramembrane particle aggregates in ADH-treated frog urinary bladder. J Membr Biol. 1989 Sep;110(2):115–126. doi: 10.1007/BF01869467. [DOI] [PubMed] [Google Scholar]
- MACROBBIE E. A., USSING H. H. Osmotic behaviour of the epithelial cells of frog skin. Acta Physiol Scand. 1961 Nov-Dec;53:348–365. doi: 10.1111/j.1748-1716.1961.tb02293.x. [DOI] [PubMed] [Google Scholar]
- Macknight A. D., DiBona D. R., Leaf A. Sodium transport across toad urinary bladder: a model "tight" epithelium. Physiol Rev. 1980 Jul;60(3):615–715. doi: 10.1152/physrev.1980.60.3.615. [DOI] [PubMed] [Google Scholar]
- Onken H., Zeiske W., Harvey B. Effect of mucosal H+ and chemical modification on transcellular K+ current in frog skin. Biochim Biophys Acta. 1990 May 9;1024(1):95–102. doi: 10.1016/0005-2736(90)90212-7. [DOI] [PubMed] [Google Scholar]
- Palmer L. G. Ion selectivity of the apical membrane Na channel in the toad urinary bladder. J Membr Biol. 1982;67(2):91–98. doi: 10.1007/BF01868651. [DOI] [PubMed] [Google Scholar]
- Parisi M., Wietzerbin J., Bourguet J. Intracellular pH, transepithelial pH gradients, and ADH-induced water channels. Am J Physiol. 1983 Jun;244(6):F712–F718. doi: 10.1152/ajprenal.1983.244.6.F712. [DOI] [PubMed] [Google Scholar]
- Pearl M., Taylor A. Actin filaments and vasopressin-stimulated water flow in toad urinary bladder. Am J Physiol. 1983 Jul;245(1):C28–C39. doi: 10.1152/ajpcell.1983.245.1.C28. [DOI] [PubMed] [Google Scholar]
- Sabatini S., Laski M. E., Kurtzman N. A. NEM-sensitive ATPase activity in rat nephron: effect of metabolic acidosis and alkalosis. Am J Physiol. 1990 Feb;258(2 Pt 2):F297–F304. doi: 10.1152/ajprenal.1990.258.2.F297. [DOI] [PubMed] [Google Scholar]
- Sabolić I., Burckhardt G. Characteristics of the proton pump in rat renal cortical endocytotic vesicles. Am J Physiol. 1986 May;250(5 Pt 2):F817–F826. doi: 10.1152/ajprenal.1986.250.5.F817. [DOI] [PubMed] [Google Scholar]
- Sabolić I., Burckhardt G. Proton ATPase in rat renal cortical endocytotic vesicles. Biochim Biophys Acta. 1988 Jan 22;937(2):398–410. doi: 10.1016/0005-2736(88)90262-3. [DOI] [PubMed] [Google Scholar]
- Sabolić I., Burckhardt G. Proton pathways in rat renal brush-border and basolateral membranes. Biochim Biophys Acta. 1983 Oct 12;734(2):210–220. doi: 10.1016/0005-2736(83)90119-0. [DOI] [PubMed] [Google Scholar]
- Sebald W., Friedl P., Schairer H. U., Hoppe J. Structure and genetics of the H+-conducting F0 portion of the ATP synthase. Ann N Y Acad Sci. 1982;402:28–44. doi: 10.1111/j.1749-6632.1982.tb25730.x. [DOI] [PubMed] [Google Scholar]
- Senior A. E., Wise J. G. The proton-ATPase of bacteria and mitochondria. J Membr Biol. 1983;73(2):105–124. doi: 10.1007/BF01870434. [DOI] [PubMed] [Google Scholar]
- Steinmetz P. R., Andersen O. S. Electrogenic proton transport in epithelial membranes. J Membr Biol. 1982;65(3):155–174. doi: 10.1007/BF01869960. [DOI] [PubMed] [Google Scholar]
- Stone D. K., Xie X. S. Proton translocating ATPases: issues in structure and function. Kidney Int. 1988 Apr;33(4):767–774. doi: 10.1038/ki.1988.65. [DOI] [PubMed] [Google Scholar]
- Strange K., Spring K. R. Cell membrane water permeability of rabbit cortical collecting duct. J Membr Biol. 1987;96(1):27–43. doi: 10.1007/BF01869332. [DOI] [PubMed] [Google Scholar]
- Taylor A., Mamelak M., Reaven E., Maffly R. Vasopressin: possible role of microtubules and microfilaments in its action. Science. 1973 Jul 27;181(4097):347–350. doi: 10.1126/science.181.4097.347. [DOI] [PubMed] [Google Scholar]
- Thomas R. C. Proton channels in snail neurons studied with surface pH glass microelectrodes. Ciba Found Symp. 1988;139:168–183. doi: 10.1002/9780470513699.ch10. [DOI] [PubMed] [Google Scholar]
- Van Driessche W. Ca2+ channels in the apical membrane of the toad urinary bladder. Pflugers Arch. 1987 Oct;410(3):243–249. doi: 10.1007/BF00580272. [DOI] [PubMed] [Google Scholar]
- Van Driessche W., Zeiske W. Ca2+-sensitive, spontaneously fluctuating, cation channels in the apical membrane of the adult frog skin epithelium. Pflugers Arch. 1985 Oct;405(3):250–259. doi: 10.1007/BF00582569. [DOI] [PubMed] [Google Scholar]
- de Sousa R. C., Grosso A. The mode of action of vasopressin: membrane microstructure and biological transport. J Physiol (Paris) 1981;77(4-5):643–669. [PubMed] [Google Scholar]