Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1991 May 1;97(5):1013–1041. doi: 10.1085/jgp.97.5.1013

Patch recordings from the electrocytes of Electrophorus electricus. Na currents and PNa/PK variability

PMCID: PMC2216506  PMID: 1650809

Abstract

Sodium currents were recorded in cell-attached and inside-out patches from the innervated membrane of Electrophorus electrocytes. Electrocytes from Sachs and main electric organs were prepared as described by Pasquale et al. (1986. J. Membr. Biol. 93:195.). Maximal currents in the Sachs organ, measured with 1-2 microns diameter patch pipettes and at room temperature, were in the range of 20 to 300 pA (27 patches) and were obtained near +10 mV. This range of current corresponds to approximately 70 to 1,300 channels in a patch. Maximal current in main organ cells also occurred near +10 mV and were in the range of 100 to 400 pA. Delayed K current was observed in a few patches. The inactivation phase of the currents during maintained depolarizations appears to be a single-exponential relaxation. The time constant decreases from 1 ms near -55 mV to a minimum of 0.3 ms near 0 mV, and then gradually increases with stronger depolarization. The mean currents are half inactivated near -90 mV with an apparent voltage dependence of e-fold per 6 mV. No apparent differences were observed in the decay time course or steady-state inactivation of the currents in the same patch before and after excision. From ensemble fluctuation analysis the peak open probability was found to be approximately 0.5 at +25 mV and increased only gradually with larger depolarizations. The single channel conductances were approximately 20 pS with 200 mM Na outside and 200 mM K inside, and 40 pS in 400 mM solutions. Reversal potentials in the 200 Na parallel 200 K solutions ranged from +51 to +94 mV in multichannel patches, corresponding to selectivity ratios PNa/PK from 8 to 43. Large differences in reversal potentials were seen even among patches from the same cell. Several controls rule out obvious sources of error in the reversal potential measurements. It is concluded that there is heterogeneity in the selectivity properties of the Na channels.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agnew W. S., Levinson S. R., Brabson J. S., Raftery M. A. Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2606–2610. doi: 10.1073/pnas.75.6.2606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Auld V. J., Goldin A. L., Krafte D. S., Marshall J., Dunn J. M., Catterall W. A., Lester H. A., Davidson N., Dunn R. J. A rat brain Na+ channel alpha subunit with novel gating properties. Neuron. 1988 Aug;1(6):449–461. doi: 10.1016/0896-6273(88)90176-6. [DOI] [PubMed] [Google Scholar]
  3. Bezanilla F., Armstrong C. M. Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol. 1977 Nov;70(5):549–566. doi: 10.1085/jgp.70.5.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bezanilla F. Single sodium channels from the squid giant axon. Biophys J. 1987 Dec;52(6):1087–1090. doi: 10.1016/S0006-3495(87)83304-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cachelin A. B., De Peyer J. E., Kokubun S., Reuter H. Sodium channels in cultured cardiac cells. J Physiol. 1983 Jul;340:389–401. doi: 10.1113/jphysiol.1983.sp014768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cahalan M., Begenisich T. Sodium channel selectivity. Dependence on internal permeant ion concentration. J Gen Physiol. 1976 Aug;68(2):111–125. doi: 10.1085/jgp.68.2.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Campbell D. T., Hille B. Kinetic and pharmacological properties of the sodium channel of frog skeletal muscle. J Gen Physiol. 1976 Mar;67(3):309–323. doi: 10.1085/jgp.67.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Campbell D. T. Ionic selectivity of the sodium channel of frog skeletal muscle. J Gen Physiol. 1976 Mar;67(3):295–307. doi: 10.1085/jgp.67.3.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chandler W. K., Meves H. Voltage clamp experiments on internally perfused giant axons. J Physiol. 1965 Oct;180(4):788–820. doi: 10.1113/jphysiol.1965.sp007732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Correa A. M., Bezanilla F., Agnew W. S. Voltage activation of purified eel sodium channels reconstituted into artificial liposomes. Biochemistry. 1990 Jul 3;29(26):6230–6240. doi: 10.1021/bi00478a017. [DOI] [PubMed] [Google Scholar]
  11. Duch D. S., Recio-Pinto E., Frenkel C., Levinson S. R., Urban B. W. Veratridine modification of the purified sodium channel alpha-polypeptide from eel electroplax. J Gen Physiol. 1989 Nov;94(5):813–831. doi: 10.1085/jgp.94.5.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ebert G. A., Goldman L. The permeability of the sodium channel in Myxicola to the alkali cations. J Gen Physiol. 1976 Sep;68(3):327–340. doi: 10.1085/jgp.68.3.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Emerick M. C., Agnew W. S. Identification of phosphorylation sites for adenosine 3',5'-cyclic phosphate dependent protein kinase on the voltage-sensitive sodium channel from Electrophorus electricus. Biochemistry. 1989 Oct 17;28(21):8367–8380. doi: 10.1021/bi00447a016. [DOI] [PubMed] [Google Scholar]
  14. Fenwick E. M., Marty A., Neher E. Sodium and calcium channels in bovine chromaffin cells. J Physiol. 1982 Oct;331:599–635. doi: 10.1113/jphysiol.1982.sp014394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fernandez J. M., Fox A. P., Krasne S. Membrane patches and whole-cell membranes: a comparison of electrical properties in rat clonal pituitary (GH3) cells. J Physiol. 1984 Nov;356:565–585. doi: 10.1113/jphysiol.1984.sp015483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Garber S. S. Symmetry and asymmetry of permeation through toxin-modified Na+ channels. Biophys J. 1988 Nov;54(5):767–776. doi: 10.1016/S0006-3495(88)83014-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Green W. N., Weiss L. B., Andersen O. S. Batrachotoxin-modified sodium channels in planar lipid bilayers. Ion permeation and block. J Gen Physiol. 1987 Jun;89(6):841–872. doi: 10.1085/jgp.89.6.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Grundfest H. Comparative electrobiology of excitable membranes. Adv Comp Physiol Biochem. 1966;2:1–116. doi: 10.1016/b978-0-12-395511-1.50006-8. [DOI] [PubMed] [Google Scholar]
  19. HODGKIN A. L., HUXLEY A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):497–506. doi: 10.1113/jphysiol.1952.sp004719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hagiwara S., Miyazaki S., Rosenthal N. P. Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish. J Gen Physiol. 1976 Jun;67(6):621–638. doi: 10.1085/jgp.67.6.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  23. Hille B. The permeability of the sodium channel to metal cations in myelinated nerve. J Gen Physiol. 1972 Jun;59(6):637–658. doi: 10.1085/jgp.59.6.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. KEYNES R. D., MARTINS-FERREIRA H. Membrane potentials in the electroplates of the electric eel. J Physiol. 1953 Feb 27;119(2-3):315–351. doi: 10.1113/jphysiol.1953.sp004849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kayano T., Noda M., Flockerzi V., Takahashi H., Numa S. Primary structure of rat brain sodium channel III deduced from the cDNA sequence. FEBS Lett. 1988 Feb 8;228(1):187–194. doi: 10.1016/0014-5793(88)80614-8. [DOI] [PubMed] [Google Scholar]
  26. Khodorov B. I. Batrachotoxin as a tool to study voltage-sensitive sodium channels of excitable membranes. Prog Biophys Mol Biol. 1985;45(2):57–148. doi: 10.1016/0079-6107(85)90005-7. [DOI] [PubMed] [Google Scholar]
  27. Krueger B. K., Worley J. F., 3rd, French R. J. Single sodium channels from rat brain incorporated into planar lipid bilayer membranes. Nature. 1983 May 12;303(5913):172–175. doi: 10.1038/303172a0. [DOI] [PubMed] [Google Scholar]
  28. Lester H. A. Analysis of sodium and potassium redistribution during sustained permeability increases at the innervated face of Electrophorus electroplaques. J Gen Physiol. 1978 Dec;72(6):847–862. doi: 10.1085/jgp.72.6.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Miller J. A., Agnew W. S., Levinson S. R. Principal glycopeptide of the tetrodotoxin/saxitoxin binding protein from Electrophorus electricus: isolation and partial chemical and physical characterization. Biochemistry. 1983 Jan 18;22(2):462–470. doi: 10.1021/bi00271a032. [DOI] [PubMed] [Google Scholar]
  30. Moczydlowski E., Garber S. S., Miller C. Batrachotoxin-activated Na+ channels in planar lipid bilayers. Competition of tetrodotoxin block by Na+. J Gen Physiol. 1984 Nov;84(5):665–686. doi: 10.1085/jgp.84.5.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Noda M., Ikeda T., Kayano T., Suzuki H., Takeshima H., Kurasaki M., Takahashi H., Numa S. Existence of distinct sodium channel messenger RNAs in rat brain. Nature. 1986 Mar 13;320(6058):188–192. doi: 10.1038/320188a0. [DOI] [PubMed] [Google Scholar]
  32. Noda M., Shimizu S., Tanabe T., Takai T., Kayano T., Ikeda T., Takahashi H., Nakayama H., Kanaoka Y., Minamino N. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature. 1984 Nov 8;312(5990):121–127. doi: 10.1038/312121a0. [DOI] [PubMed] [Google Scholar]
  33. Pasquale E. B., Udgaonkar J. B., Hess G. P. Single-channel current recordings of acetylcholine receptors in electroplax isolated from the Electrophorus electricus Main and Sachs' electric organs. J Membr Biol. 1986;93(2):195–204. doi: 10.1007/BF01870811. [DOI] [PubMed] [Google Scholar]
  34. Recio-Pinto E., Duch D. S., Levinson S. R., Urban B. W. Purified and unpurified sodium channels from eel electroplax in planar lipid bilayers. J Gen Physiol. 1987 Sep;90(3):375–395. doi: 10.1085/jgp.90.3.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rosenberg R. L., Tomiko S. A., Agnew W. S. Reconstitution of neurotoxin-modulated ion transport by the voltage-regulated sodium channel isolated from the electroplax of Electrophorus electricus. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1239–1243. doi: 10.1073/pnas.81.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rosenberg R. L., Tomiko S. A., Agnew W. S. Single-channel properties of the reconstituted voltage-regulated Na channel isolated from the electroplax of Electrophorus electricus. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5594–5598. doi: 10.1073/pnas.81.17.5594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ruiz-Manresa F., Grundfest H. Temperature dependence of the four ionic processes of spike electrogenesis in eel electroplaques. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3554–3557. doi: 10.1073/pnas.73.10.3554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shenkel S., Cooper E. C., James W., Agnew W. S., Sigworth F. J. Purified, modified eel sodium channels are active in planar bilayers in the absence of activating neurotoxins. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9592–9596. doi: 10.1073/pnas.86.23.9592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sigworth F. J. The variance of sodium current fluctuations at the node of Ranvier. J Physiol. 1980 Oct;307:97–129. doi: 10.1113/jphysiol.1980.sp013426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Thornhill W. B., Levinson S. R. Biosynthesis of electroplax sodium channels. Ann N Y Acad Sci. 1986;479:356–363. doi: 10.1111/j.1749-6632.1986.tb15581.x. [DOI] [PubMed] [Google Scholar]
  41. Trimmer J. S., Cooperman S. S., Tomiko S. A., Zhou J. Y., Crean S. M., Boyle M. B., Kallen R. G., Sheng Z. H., Barchi R. L., Sigworth F. J. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron. 1989 Jul;3(1):33–49. doi: 10.1016/0896-6273(89)90113-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES