Abstract
The effects of theophylline, 8-Br-cAMP, and cAMP on necturus gallbladder epithelium were investigated using microelectrode techniques. Each of these substances depolarized the cell membranes by approximately 15 mV and decreased the apparent ratio of apical to basolateral membrane resistances to a value not significantly different from zero. Examination of the ionic selectivity of the apical membrane by ion substitutions in the mucosal bathing medium revealed a large increase in Cl permeability with no apparent changes in K and Na permeabilities. Intracellular Cl activity ((a)CL(i)) was measured using Cl- sensitive liquid ion-exchanger microelectrodes. Under control conditions, (a)Cl(i) was approximately 20 mM, 2.5 times higher than the value expected for equilibrium distribution ((a)Cl(i/eq). After addition of 8-Br-cAMP, (a)Cl(i) decreased within less than 60 s to approximately 13 mM, a value not significantly different from ((a)Cl(i/eq)). Virtually identical results were obtained with theophylline. Under control conditions, luminal Cl removal caused (a)Cl(i) to fall at an initial rate of 1.8 mM/min, whereas in tissues exposed to 8-Br- cAMP or theophylline a rate of 11.6 mM/min was observed. The apical membrane Cl transference number was estimated from the change of (a)Cl(i) upon exposure to 8-Br-cAMP as well as from the changes in apical membrane potential during variation of the luminal Cl concentration. The results, 0.91 and 0.88, respectively, are indicative of a high Cl permeability of the apical membrane during cAMP. This effect may explain, at least in part, the complete inhibition of fluid absorption produced by theophylline in this tissue. Moreover, enhancement of apical membrane Cl permeability may account for a variety of cAMP effects in epithelial tissues.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cremaschi D., Hénin S. Na+ and Cl- transepithelial routes in rabbit gallbladder: tracer analysis of the transports. Pflugers Arch. 1975 Dec 19;361(1):33–41. doi: 10.1007/BF00587337. [DOI] [PubMed] [Google Scholar]
- DIAMOND J. M. The reabsorptive function of the gall-bladder. J Physiol. 1962 May;161:442–473. doi: 10.1113/jphysiol.1962.sp006898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diez de los Rios A., DeRose N. E., Armstrong W. M. Cyclic AMP and intracellular ionic activities in Necturus gallbladder. J Membr Biol. 1981;63(1-2):25–30. doi: 10.1007/BF01969442. [DOI] [PubMed] [Google Scholar]
- Duffey M. E., Hainau B., Ho S., Bentzel C. J. Regulation of epithelial tight junction permeability by cyclic AMP. Nature. 1981 Dec 3;294(5840):451–453. doi: 10.1038/294451a0. [DOI] [PubMed] [Google Scholar]
- Ericson A. C., Spring K. R. Coupled NaCl entry into Necturus gallbladder epithelial cells. Am J Physiol. 1982 Sep;243(3):C140–C145. doi: 10.1152/ajpcell.1982.243.3.C140. [DOI] [PubMed] [Google Scholar]
- Field M. Ion transport in rabbit ileal mucosa. II. Effects of cyclic 3', 5'-AMP. Am J Physiol. 1971 Oct;221(4):992–997. doi: 10.1152/ajplegacy.1971.221.4.992. [DOI] [PubMed] [Google Scholar]
- Field M., Smith P. L., Bolton J. E. Ion transport across the isolated intestinal mucosa of the winter flounder, Pseudopleuronectes americans: II. effects of cyclic AMP. J Membr Biol. 1980 Aug 7;55(3):157–163. doi: 10.1007/BF01869457. [DOI] [PubMed] [Google Scholar]
- Fisher R. S., Persson B. E., Spring K. R. Epithelial cell volume regulation: bicarbonate dependence. Science. 1981 Dec 18;214(4527):1357–1359. doi: 10.1126/science.7313695. [DOI] [PubMed] [Google Scholar]
- Frizzell R. A., Dugas M. C., Schultz S. G. Sodium chloride transport by rabbit gallbladder. Direct evidence for a coupled NaCl influx process. J Gen Physiol. 1975 Jun;65(6):769–795. doi: 10.1085/jgp.65.6.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frizzell R. A., Field M., Schultz S. G. Sodium-coupled chloride transport by epithelial tissues. Am J Physiol. 1979 Jan;236(1):F1–F8. doi: 10.1152/ajprenal.1979.236.1.F1. [DOI] [PubMed] [Google Scholar]
- Frizzell R. A., Smith P. L., Vosburgh E., Field M. Coupled sodium-chloride influx across brush border of flounder intestine. J Membr Biol. 1979 Apr 12;46(1):27–39. doi: 10.1007/BF01959973. [DOI] [PubMed] [Google Scholar]
- Frömter E., Diamond J. Route of passive ion permeation in epithelia. Nat New Biol. 1972 Jan 5;235(53):9–13. doi: 10.1038/newbio235009a0. [DOI] [PubMed] [Google Scholar]
- Garcia-Diaz J. F., Armstrong W. M. The steady-state relationship between sodium and chloride transmembrane electrochemical potential differences in Necturus gallbladder. J Membr Biol. 1980 Aug 7;55(3):213–222. doi: 10.1007/BF01869462. [DOI] [PubMed] [Google Scholar]
- Guggino W. B., Boulpaep E. L., Giebisch G. Electrical properties of chloride transport across the necturus proximal tubule. J Membr Biol. 1982;65(3):185–196. doi: 10.1007/BF01869962. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heintze K., Petersen K. U., Heidenreich O. Inhibition of fluid transport in the isolated gall bladder of the guinea pig by isoprenaline, theophylline and cyclic adenosine 3',5'-monophosphate. Naunyn Schmiedebergs Arch Pharmacol. 1974;285(2):151–163. doi: 10.1007/BF00501150. [DOI] [PubMed] [Google Scholar]
- Heintze K., Petersen K. U., Olles P., Saverymuttu S. H., Wood J. R. Effects of bicarbonate on fluid and electrolyte transport by the guinea pig gallbladder: a bicarbonate-chloride exchange. J Membr Biol. 1979 Mar 28;45(1-2):43–59. doi: 10.1007/BF01869294. [DOI] [PubMed] [Google Scholar]
- Klyce S. D., Wong R. K. Site and mode of adrenaline action on chloride transport across the rabbit corneal epithelium. J Physiol. 1977 Apr;266(3):777–799. doi: 10.1113/jphysiol.1977.sp011793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandel L. J. Actions of external hypertonic urea, ADH, and theophylline on transcellular and extracellular solute permeabilities in frog skin. J Gen Physiol. 1975 May;65(5):599–615. doi: 10.1085/jgp.65.5.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nellans H. N., Frizzell R. A., Schultz S. G. Coupled sodium-chloride influx across the brush border of rabbit ileum. Am J Physiol. 1973 Aug;225(2):467–475. doi: 10.1152/ajplegacy.1973.225.2.467. [DOI] [PubMed] [Google Scholar]
- Petersen K. U., Osswald H., Heintze K. Asymmetric release of cyclic AMP from guinea-pig and rabbit gallbladder. Naunyn Schmiedebergs Arch Pharmacol. 1982 Mar;318(4):358–362. doi: 10.1007/BF00501178. [DOI] [PubMed] [Google Scholar]
- Petersen K. U., Wood J. R., Schulze G., Heintze K. Stimulation of gallbladder fluid and electrolyte absorption by butyrate. J Membr Biol. 1981;62(3):183–193. doi: 10.1007/BF01998164. [DOI] [PubMed] [Google Scholar]
- Reuss L., Cheung L. Y., Grady T. P. Mechanisms of cation permeation across apical cell membrane of Necturus gallbladder: effects of luminal pH and divalent cations on K+ and Na+ permeability. J Membr Biol. 1981 Apr 30;59(3):211–224. doi: 10.1007/BF01875426. [DOI] [PubMed] [Google Scholar]
- Reuss L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder: III. Ionic permeability of the basolateral cell membrane. J Membr Biol. 1979 May 25;47(3):239–259. doi: 10.1007/BF01869080. [DOI] [PubMed] [Google Scholar]
- Reuss L., Finn A. L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. I. Circuit analysis and steady-state effects of mucosal solution ionic substitutions. J Membr Biol. 1975 Dec 4;25(1-2):115–139. doi: 10.1007/BF01868571. [DOI] [PubMed] [Google Scholar]
- Reuss L., Finn A. L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. II. Ionic permeability of the apical cell membrane. J Membr Biol. 1975 Dec 4;25(1-2):141–161. doi: 10.1007/BF01868572. [DOI] [PubMed] [Google Scholar]
- Reuss L., Grady T. P. Effects of external sodium and cell membrane potential on intracellular chloride activity in gallbladder epithelium. J Membr Biol. 1979 Dec 12;51(1):15–31. doi: 10.1007/BF01869341. [DOI] [PubMed] [Google Scholar]
- Reuss L., Weinman S. A., Grady T. P. Intracellular K+ activity and its relation to basolateral membrane ion transport in Necturus gallbladder epithelium. J Gen Physiol. 1980 Jul;76(1):33–52. doi: 10.1085/jgp.76.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reuss L., Weinman S. A. Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium. J Membr Biol. 1979 Sep 14;49(4):345–362. doi: 10.1007/BF01868991. [DOI] [PubMed] [Google Scholar]
- Rose R. C., Nahrwold D. L. Electrolyte transport in Necturus gallbladder: the role of rheogenic Na transport. Am J Physiol. 1980 Apr;238(4):G358–G365. doi: 10.1152/ajpgi.1980.238.4.G358. [DOI] [PubMed] [Google Scholar]
- Spring K. R., Hope A. Fluid transport and the dimensions of cells and interspaces of living Necturus gallbladder. J Gen Physiol. 1979 Mar;73(3):287–305. doi: 10.1085/jgp.73.3.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomita T., Sakamoto Y., Oba M. Conductance increase by adrenaline in guinea pig taenia coli studied with voltage clamp method. Nature. 1974 Aug 2;250(465):432–433. doi: 10.1038/250432a0. [DOI] [PubMed] [Google Scholar]
- Weinman S. A., Reuss L. Na+-H+ exchange at the apical membrane of Necturus gallbladder. Extracellular and intracellular pH studies. J Gen Physiol. 1982 Aug;80(2):299–321. doi: 10.1085/jgp.80.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeuthen T. Relations between intracellular ion activities and extracellular osmolarity in Necturus gallbladder epithelium. J Membr Biol. 1982;66(2):109–121. doi: 10.1007/BF01868487. [DOI] [PubMed] [Google Scholar]
- van Os C. H., Slegers J. F. The electrical potential profile of gallbladder epithelium. J Membr Biol. 1975 Dec 4;24(3-4):341–363. doi: 10.1007/BF01868631. [DOI] [PubMed] [Google Scholar]
