Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1992 Jan 1;99(1):109–129. doi: 10.1085/jgp.99.1.109

Modification of potassium channel kinetics by amino group reagents

PMCID: PMC2216595  PMID: 1740669

Abstract

We have examined the actions of several amino group reagents on delayed rectifier potassium channels in squid giant axons. Three general classes of reagents were used: (1) those that preserved the positive charge of amino groups; (2) those that neutralize the charge; and (3) those that replace the positive with a negative charge. All three types of reagents produced qualitatively similar effects on K channel properties. Trinitrobenzene sulfonic acid (TNBS) neutralizes the peptide terminal amino groups and the epsilon-amino group of lysine groups. TNBS (a) slowed the kinetics of macroscopic ionic currents; (b) increased the size of ionic currents at large positive voltages; (c) shifted the voltage-dependent probability of channel opening to more positive potentials but had no effect on the voltage sensitivity; and (d) altered several properties of K channel gating currents. The actions of TNBS on gating currents suggest the presence of multiple gating current components. These effects are not all coupled, suggesting that several amino groups on the external surface of K channels are important for channel gating. A simple kinetic model that considers the channel to be composed of independent heterologous subunits is consistent with most of the modifications produced by amino group reagents.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alkon D. L. Voltage-dependent calcium and potassium ion conductances: a contingency mechanism for an associative learning model. Science. 1979 Aug 24;205(4408):810–816. doi: 10.1126/science.223244. [DOI] [PubMed] [Google Scholar]
  2. Almers W., Armstrong C. M. Survival of K+ permeability and gating currents in squid axons perfused with K+-free media. J Gen Physiol. 1980 Jan;75(1):61–78. doi: 10.1085/jgp.75.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armstrong C. M., Bezanilla F. Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol. 1974 May;63(5):533–552. doi: 10.1085/jgp.63.5.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Begenisich T., Lynch C. Effects of internal divalent cations on voltage-clamped squid axons. J Gen Physiol. 1974 Jun;63(6):675–689. doi: 10.1085/jgp.63.6.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bezanilla F., Armstrong C. M. Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol. 1977 Nov;70(5):549–566. doi: 10.1085/jgp.70.5.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Busath D., Begenisich T. Unidirectional sodium and potassium fluxes through the sodium channel of squid giant axons. Biophys J. 1982 Oct;40(1):41–49. doi: 10.1016/S0006-3495(82)84456-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cahalan M. D., Pappone P. A. Chemical modification of potassium channel gating in frog myelinated nerve by trinitrobenzene sulphonic acid. J Physiol. 1983 Sep;342:119–143. doi: 10.1113/jphysiol.1983.sp014843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cahalan M. D., Pappone P. A. Chemical modification of sodium channel surface charges in frog skeletal muscle by trinitrobenzene sulphonic acid. J Physiol. 1981 Dec;321:127–139. doi: 10.1113/jphysiol.1981.sp013975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chabala L. D. The kinetics of recovery and development of potassium channel inactivation in perfused squid (Loligo pealei) giant axons. J Physiol. 1984 Nov;356:193–220. doi: 10.1113/jphysiol.1984.sp015460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chandler W. K., Meves H. Sodium and potassium currents in squid axons perfused with fluoride solutions. J Physiol. 1970 Dec;211(3):623–652. doi: 10.1113/jphysiol.1970.sp009297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Connor J. A., Stevens C. F. Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol. 1971 Feb;213(1):21–30. doi: 10.1113/jphysiol.1971.sp009365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Drews G., Rack M. Modification of sodium and gating currents by amino group specific cross-linking and monofunctional reagents. Biophys J. 1988 Sep;54(3):383–391. doi: 10.1016/S0006-3495(88)82971-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ehrenstein G., Gilbert D. L. Slow changes of potassium permeability in the squid giant axon. Biophys J. 1966 Sep;6(5):553–566. doi: 10.1016/S0006-3495(66)86677-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. FRANKENHAEUSER B., HODGKIN A. L. The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol. 1956 Feb 28;131(2):341–376. doi: 10.1113/jphysiol.1956.sp005467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Freedman R. B., Radda G. K. The reaction of 2,4,6-trinitrobenzenesulphonic acid with amino acids, Peptides and proteins. Biochem J. 1968 Jul;108(3):383–391. doi: 10.1042/bj1080383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gilly W. F., Armstrong C. M. Gating current and potassium channels in the giant axon of the squid. Biophys J. 1980 Mar;29(3):485–492. doi: 10.1016/S0006-3495(80)85147-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gordesky S. E., Marinetti G. V., Love R. The reaction of chemical probes with the erythrocyte membrane. J Membr Biol. 1975;20(1-2):111–132. doi: 10.1007/BF01870631. [DOI] [PubMed] [Google Scholar]
  18. Haest C. W., Deuticke B. Experimental alteration of phospholipid-protein interactions within the human erythrocyte membrane. Dependence on glycolytic metabolism. Biochim Biophys Acta. 1975 Sep 2;401(3):468–480. doi: 10.1016/0005-2736(75)90244-8. [DOI] [PubMed] [Google Scholar]
  19. Hoshi T., Zagotta W. N., Aldrich R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 1990 Oct 26;250(4980):533–538. doi: 10.1126/science.2122519. [DOI] [PubMed] [Google Scholar]
  20. Isacoff E. Y., Jan Y. N., Jan L. Y. Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes. Nature. 1990 Jun 7;345(6275):530–534. doi: 10.1038/345530a0. [DOI] [PubMed] [Google Scholar]
  21. Isenberg I., Dyson R. D., Hanson R. Studies on the analysis of fluorescence decay data by the method of moments. Biophys J. 1973 Oct;13(10):1090–1115. doi: 10.1016/S0006-3495(73)86047-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jan L. Y., Jan Y. N. How might the diversity of potassium channels be generated? Trends Neurosci. 1990 Oct;13(10):415–419. doi: 10.1016/0166-2236(90)90123-r. [DOI] [PubMed] [Google Scholar]
  23. Klaiber K., Williams N., Roberts T. M., Papazian D. M., Jan L. Y., Miller C. Functional expression of Shaker K+ channels in a baculovirus-infected insect cell line. Neuron. 1990 Aug;5(2):221–226. doi: 10.1016/0896-6273(90)90311-3. [DOI] [PubMed] [Google Scholar]
  24. MacKinnon R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature. 1991 Mar 21;350(6315):232–235. doi: 10.1038/350232a0. [DOI] [PubMed] [Google Scholar]
  25. Meech R. W., Standen N. B. Potassium activation in Helix aspersa neurones under voltage clamp: a component mediated by calcium influx. J Physiol. 1975 Jul;249(2):211–239. doi: 10.1113/jphysiol.1975.sp011012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Meves H., Rubly N. Effects of reagents modifying carboxyl groups on the gating current of the myelinated nerve fiber. J Membr Biol. 1987;100(1):63–72. doi: 10.1007/BF02209141. [DOI] [PubMed] [Google Scholar]
  27. Meves H., Rubly N., Stämpfli R. The action of arginine-specific reagents on ionic and gating currents in frog myelinated nerve. Biochim Biophys Acta. 1988 Aug 4;943(1):1–12. doi: 10.1016/0005-2736(88)90340-9. [DOI] [PubMed] [Google Scholar]
  28. Noble D., Tsien R. W. Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J Physiol. 1969 Jan;200(1):205–231. doi: 10.1113/jphysiol.1969.sp008689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Oxford G. S., Wu C. H., Narahashi T. Removal of sodium channel inactivation in squid giant axons by n-bromoacetamide. J Gen Physiol. 1978 Mar;71(3):227–247. doi: 10.1085/jgp.71.3.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Papazian D. M., Timpe L. C., Jan Y. N., Jan L. Y. Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature. 1991 Jan 24;349(6307):305–310. doi: 10.1038/349305a0. [DOI] [PubMed] [Google Scholar]
  31. Pongs O., Kecskemethy N., Müller R., Krah-Jentgens I., Baumann A., Kiltz H. H., Canal I., Llamazares S., Ferrus A. Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila. EMBO J. 1988 Apr;7(4):1087–1096. doi: 10.1002/j.1460-2075.1988.tb02917.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rudy B., Hoger J. H., Lester H. A., Davidson N. At least two mRNA species contribute to the properties of rat brain A-type potassium channels expressed in Xenopus oocytes. Neuron. 1988 Oct;1(8):649–658. doi: 10.1016/0896-6273(88)90164-x. [DOI] [PubMed] [Google Scholar]
  33. Ruppersberg J. P., Schröter K. H., Sakmann B., Stocker M., Sewing S., Pongs O. Heteromultimeric channels formed by rat brain potassium-channel proteins. Nature. 1990 Jun 7;345(6275):535–537. doi: 10.1038/345535a0. [DOI] [PubMed] [Google Scholar]
  34. Siegelbaum S. A., Camardo J. S., Kandel E. R. Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature. 1982 Sep 30;299(5882):413–417. doi: 10.1038/299413a0. [DOI] [PubMed] [Google Scholar]
  35. Spires S., Begenisich T. Modification of potassium channel kinetics by histidine-specific reagents. J Gen Physiol. 1990 Oct;96(4):757–775. doi: 10.1085/jgp.96.4.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Spires S., Begenisich T. Pharmacological and kinetic analysis of K channel gating currents. J Gen Physiol. 1989 Feb;93(2):263–283. doi: 10.1085/jgp.93.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stühmer W., Ruppersberg J. P., Schröter K. H., Sakmann B., Stocker M., Giese K. P., Perschke A., Baumann A., Pongs O. Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J. 1989 Nov;8(11):3235–3244. doi: 10.1002/j.1460-2075.1989.tb08483.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. White M. M., Bezanilla F. Activation of squid axon K+ channels. Ionic and gating current studies. J Gen Physiol. 1985 Apr;85(4):539–554. doi: 10.1085/jgp.85.4.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zagotta W. N., Aldrich R. W. Voltage-dependent gating of Shaker A-type potassium channels in Drosophila muscle. J Gen Physiol. 1990 Jan;95(1):29–60. doi: 10.1085/jgp.95.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES