Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1992 Jan 1;99(1):21–40. doi: 10.1085/jgp.99.1.21

Comparison of endogenous and exogenous sources of ATP in fueling Ca2+ uptake in smooth muscle plasma membrane vesicles

PMCID: PMC2216599  PMID: 1311020

Abstract

A smooth muscle plasma membrane vesicular fraction (PMV) purified for the (Ca2+/Mg2+)-ATPase has endogenous glycolytic enzyme activity. In the presence of glycolytic substrate (fructose 1,6-diphosphate) and cofactors, PMV produced ATP and lactate and supported calcium uptake. The endogenous glycolytic cascade supports calcium uptake independent of bath [ATP]. A 10-fold dilution of PMV, with the resultant 10-fold dilution of glycolytically produced bath [ATP] did not change glycolytically fueled calcium uptake (nanomoles per milligram protein). Furthermore, the calcium uptake fueled by the endogenous glycolytic cascade persisted in the presence of a hexokinase-based ATP trap which eliminated calcium uptake fueled by exogenously added ATP. Thus, it appears that the endogenous glycolytic cascade fuels calcium uptake in PMV via a membrane-associated pool of ATP and not via an exchange of ATP with the bulk solution. To determine whether ATP produced endogenously was utilized preferentially by the calcium pump, the ATP production rates of the endogenous creatine kinase and pyruvate kinase were matched to that of glycolysis and the calcium uptake fueled by the endogenous sources was compared with that fueled by exogenous ATP added at the same rate. The rate of calcium uptake fueled by endogenous sources of ATP was approximately twice that supported by exogenously added ATP, indicating that the calcium pump preferentially utilizes ATP produced by membrane-bound enzymes.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balaban R. S., Bader J. P. Studies on the relationship between glycolysis and (Na+ + K+)-ATPase in cultured cells. Biochim Biophys Acta. 1984 Aug 17;804(4):419–426. doi: 10.1016/0167-4889(84)90069-7. [DOI] [PubMed] [Google Scholar]
  2. Brady S. T., Lasek R. J. Nerve-specific enolase and creatine phosphokinase in axonal transport: soluble proteins and the axoplasmic matrix. Cell. 1981 Feb;23(2):515–523. doi: 10.1016/0092-8674(81)90147-1. [DOI] [PubMed] [Google Scholar]
  3. Casteels R., Wuytack F. Aerobic and anaerobic metabolism in smooth muscle cells of taenia coli in relation to active ion transport. J Physiol. 1975 Sep;250(2):203–220. doi: 10.1113/jphysiol.1975.sp011049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caswell A. H., Corbett A. M. Interaction of glyceraldehyde-3-phosphate dehydrogenase with isolated microsomal subfractions of skeletal muscle. J Biol Chem. 1985 Jun 10;260(11):6892–6898. [PubMed] [Google Scholar]
  5. Clarke F. M., Masters C. J. On the association of glycolytic enzymes with structural proteins of skeletal muscle. Biochim Biophys Acta. 1975 Jan 13;381(1):37–46. doi: 10.1016/0304-4165(75)90187-7. [DOI] [PubMed] [Google Scholar]
  6. Daum G., Keller K., Lange K. Association of glycolytic enzymes with the cytoplasmic side of the plasma membrane of glioma cells. Biochim Biophys Acta. 1988 Apr 7;939(2):277–281. doi: 10.1016/0005-2736(88)90071-5. [DOI] [PubMed] [Google Scholar]
  7. Dully C. C., Bocek R. M., Beatty C. H. Presence of two or more glucose-6-phosphate pools in voluntary skeletal muscle and their sensitivity to insulin. Endocrinology. 1969 Apr;84(4):855–860. doi: 10.1210/endo-84-4-855. [DOI] [PubMed] [Google Scholar]
  8. Entam M. L., Kanike K., Goldstein M. A., Nelson T. E., Bornet E. P., Futch T. W., Schwartz A. Association of gylcogenolysis with cardiac sarcoplasmic reticulum. J Biol Chem. 1976 May 25;251(10):3140–3146. [PubMed] [Google Scholar]
  9. Entman M. L., Keslensky S. S., Chu A., Van Winkle W. B. The sarcoplasmic reticulum-glycogenolytic complex in mammalian fast twitch skeletal muscle. Proposed in vitro counterpart of the contraction-activated glycogenolytic pool. J Biol Chem. 1980 Jul 10;255(13):6245–6252. [PubMed] [Google Scholar]
  10. Godt R. E., Maughan D. W. On the composition of the cytosol of relaxed skeletal muscle of the frog. Am J Physiol. 1988 May;254(5 Pt 1):C591–C604. doi: 10.1152/ajpcell.1988.254.5.C591. [DOI] [PubMed] [Google Scholar]
  11. Green D. E., Murer E., Hultin H. O., Richardson S. H., Salmon B., Brierley G. P., Baum H. Association of integrated metabolic pathways with membranes. I. Glycolytic enzymes of the red blood corpuscle and yeast. Arch Biochem Biophys. 1965 Dec;112(3):635–647. doi: 10.1016/0003-9861(65)90107-4. [DOI] [PubMed] [Google Scholar]
  12. Grosse R., Spitzer E., Kupriyanov V. V., Saks V. A., Repke K. R. Coordinate interplay between (Na+ + K+)-ATPase and creatine phosphokinase optimizes (Na+/K+)-antiport across the membrane of vesicles formed from the plasma membrane of cardiac muscle cell. Biochim Biophys Acta. 1980 Dec 2;603(1):142–156. doi: 10.1016/0005-2736(80)90397-1. [DOI] [PubMed] [Google Scholar]
  13. Grover A. K., Samson S. E. Pig coronary artery smooth muscle: substrate and pH dependence of the two calcium pumps. Am J Physiol. 1986 Oct;251(4 Pt 1):C529–C534. doi: 10.1152/ajpcell.1986.251.4.C529. [DOI] [PubMed] [Google Scholar]
  14. Jenkins J. D., Madden D. P., Steck T. L. Association of phosphofructokinase and aldolase with the membrane of the intact erythrocyte. J Biol Chem. 1984 Aug 10;259(15):9374–9378. [PubMed] [Google Scholar]
  15. Kliman H. J., Steck T. L. Association of glyceraldehyde-3-phosphate dehydrogenase with the human red cell membrane. A kinetic analysis. J Biol Chem. 1980 Jul 10;255(13):6314–6321. [PubMed] [Google Scholar]
  16. Lynch R. M., Balaban R. S. Coupling of aerobic glycolysis and Na+-K+-ATPase in renal cell line MDCK. Am J Physiol. 1987 Aug;253(2 Pt 1):C269–C276. doi: 10.1152/ajpcell.1987.253.2.C269. [DOI] [PubMed] [Google Scholar]
  17. Lynch R. M., Paul R. J. Compartmentation of carbohydrate metabolism in vascular smooth muscle. Am J Physiol. 1987 Mar;252(3 Pt 1):C328–C334. doi: 10.1152/ajpcell.1987.252.3.C328. [DOI] [PubMed] [Google Scholar]
  18. Lynch R. M., Paul R. J. Compartmentation of glycolytic and glycogenolytic metabolism in vascular smooth muscle. Science. 1983 Dec 23;222(4630):1344–1346. doi: 10.1126/science.6658455. [DOI] [PubMed] [Google Scholar]
  19. Lynch R. M., Paul R. J. Energy metabolism and transduction in smooth muscle. Experientia. 1985 Aug 15;41(8):970–977. doi: 10.1007/BF01952116. [DOI] [PubMed] [Google Scholar]
  20. Mercer R. W., Dunham P. B. Membrane-bound ATP fuels the Na/K pump. Studies on membrane-bound glycolytic enzymes on inside-out vesicles from human red cell membranes. J Gen Physiol. 1981 Nov;78(5):547–568. doi: 10.1085/jgp.78.5.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pagliaro L., Taylor D. L. Aldolase exists in both the fluid and solid phases of cytoplasm. J Cell Biol. 1988 Sep;107(3):981–991. doi: 10.1083/jcb.107.3.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Parker J. C., Hoffman J. F. The role of membrane phosphoglycerate kinase in the control of glycolytic rate by active cation transport in human red blood cells. J Gen Physiol. 1967 Mar;50(4):893–916. doi: 10.1085/jgp.50.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Paul R. J., Bauer M., Pease W. Vascular smooth muscle: aerobic glycolysis linked to sodium and potassium transport processes. Science. 1979 Dec 21;206(4425):1414–1416. doi: 10.1126/science.505014. [DOI] [PubMed] [Google Scholar]
  24. Paul R. J., Hardin C. D., Raeymaekers L., Wuytack F., Casteels R. Preferential support of Ca2+ uptake in smooth muscle plasma membrane vesicles by an endogenous glycolytic cascade. FASEB J. 1989 Sep;3(11):2298–2301. doi: 10.1096/fasebj.3.11.2528493. [DOI] [PubMed] [Google Scholar]
  25. Pierce G. N., Philipson K. D. Binding of glycolytic enzymes to cardiac sarcolemmal and sarcoplasmic reticular membranes. J Biol Chem. 1985 Jun 10;260(11):6862–6870. [PubMed] [Google Scholar]
  26. Proverbio F., Hoffman J. F. Membrane compartmentalized ATP and its preferential use by the Na,K-ATPase of human red cell ghosts. J Gen Physiol. 1977 May;69(5):605–632. doi: 10.1085/jgp.69.5.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Proverbio F., Shoemaker D. G., Hoffman J. F. Functional consequences of the membrane pool of ATP associated with the human red blood cell Na/K pump. Prog Clin Biol Res. 1988;268A:561–567. [PubMed] [Google Scholar]
  28. Raeymaekers L., Agostini B., Hasselbach W. The formation of intravesicular calcium phosphate deposits in microsomes of smooth muscle. A comparison with sarcoplasmic reticulum of skeletal muscle. Histochemistry. 1981;70(2):139–150. doi: 10.1007/BF00493206. [DOI] [PubMed] [Google Scholar]
  29. Raeymaekers L., Wuytack F., Casteels R. Subcellular fractionation of pig stomach smooth muscle. A study of the distribution of the (Ca2+ + Mg2+)-ATPase activity in plasmalemma and endoplasmic reticulum. Biochim Biophys Acta. 1985 May 28;815(3):441–454. doi: 10.1016/0005-2736(85)90372-4. [DOI] [PubMed] [Google Scholar]
  30. Rossi A. M., Eppenberger H. M., Volpe P., Cotrufo R., Wallimann T. Muscle-type MM creatine kinase is specifically bound to sarcoplasmic reticulum and can support Ca2+ uptake and regulate local ATP/ADP ratios. J Biol Chem. 1990 Mar 25;265(9):5258–5266. [PubMed] [Google Scholar]
  31. SHAW W. N., STADIE W. C. Two identical Embden-Meyerhof enzyme systems in normal rat diaphragms differing in cytological location and response to insulin. J Biol Chem. 1959 Oct;234:2491–2496. [PubMed] [Google Scholar]
  32. Saks V. A., Ventura-Clapier R., Huchua Z. A., Preobrazhensky A. N., Emelin I. V. Creatine kinase in regulation of heart function and metabolism. I. Further evidence for compartmentation of adenine nucleotides in cardiac myofibrillar and sarcolemmal coupled ATPase-creatine kinase systems. Biochim Biophys Acta. 1984 Apr 16;803(4):254–264. doi: 10.1016/0167-4889(84)90115-0. [DOI] [PubMed] [Google Scholar]
  33. Srere P. A. Complexes of sequential metabolic enzymes. Annu Rev Biochem. 1987;56:89–124. doi: 10.1146/annurev.bi.56.070187.000513. [DOI] [PubMed] [Google Scholar]
  34. Threlfall C. J., Heath D. F. Compartmentation between glycolysis and gluconeogenesis in rat liver. Biochem J. 1968 Nov;110(2):303–312. doi: 10.1042/bj1100303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Weiss J. N., Lamp S. T. Glycolysis preferentially inhibits ATP-sensitive K+ channels in isolated guinea pig cardiac myocytes. Science. 1987 Oct 2;238(4823):67–69. doi: 10.1126/science.2443972. [DOI] [PubMed] [Google Scholar]
  36. Wuytack F., Raeymaekers L., Casteels R. The Ca2+-transport ATPases in smooth muscle. Experientia. 1985 Jul 15;41(7):900–905. doi: 10.1007/BF01970008. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES