Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1992 Feb 1;99(2):137–175. doi: 10.1085/jgp.99.2.137

Fusion of membranes during fertilization. Increases of the sea urchin egg's membrane capacitance and membrane conductance at the site of contact with the sperm

PMCID: PMC2216609  PMID: 1613481

Abstract

The early events of fertilization that precede and cause activation of an egg have not been fully elucidated. The earliest electrophysiological change in the sea urchin egg is a sperm-evoked increase of the egg's membrane conductance. The resulting depolarization facilitates entry of the fertilizing sperm and precludes the entry of supernumerary sperm. The sequence of the increase in the egg's membrane conductance, gamete membrane fusion, egg activation, and sperm entry, including causal relationships between these events, are not known. This study reports the use of whole egg voltage clamp and loose patch clamp to monitor simultaneously changes of membrane conductance and capacitance at the site of sperm-egg contact. Measurements were made during sperm-egg interactions where sperm entry readily proceeded or was precluded by maintaining the egg's membrane potential either at large, negative values or at positive values. Whenever the sperm evoked an increase of the egg's membrane conductance, that increase initiated abruptly, was localized to the site of sperm attachment, and was accompanied by a simultaneous abrupt increase of the membrane capacitance. This increase of capacitance indicated the establishment of electrical continuity between gametes (possibly fusion of the gametes' plasma membranes). If sperm entry was blocked by large negative membrane potentials, the capacitance cut off rapidly and simultaneously with a decrease of the membrane conductance, indicating that electrical continuity between gametes was disrupted. When sperm entry was precluded by positive membrane potentials, neither conductance nor capacitance increased, indicating that sperm entry was halted before the fusion of membranes. A second, smooth increase of capacitance was associated with the exocytosis of cortical granules near the sperm in eggs that were activated. Electrical continuity between the gametes always preceded activation of the egg, but transient electrical continuity between the gametes alone was not always sufficient to induce activation.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN R. D., GRIFFIN J. L. The time sequence of early events in the fertilization of sea urchin eggs. I. The latent period and the cortical reaction. Exp Cell Res. 1958 Aug;15(1):163–173. doi: 10.1016/0014-4827(58)90072-7. [DOI] [PubMed] [Google Scholar]
  2. Almers W. Exocytosis. Annu Rev Physiol. 1990;52:607–624. doi: 10.1146/annurev.ph.52.030190.003135. [DOI] [PubMed] [Google Scholar]
  3. Bennett M. V., Goodenough D. A. Gap junctions, electrotonic coupling, and intercellular communication. Neurosci Res Program Bull. 1978 Sep;16(3):1–486. [PubMed] [Google Scholar]
  4. Breckenridge L. J., Almers W. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. 1987 Aug 27-Sep 2Nature. 328(6133):814–817. doi: 10.1038/328814a0. [DOI] [PubMed] [Google Scholar]
  5. Chambers E. L., de Armendi J. Membrane potential, action potential and activation potential of eggs of the sea urchin, Lytechinus variegatus. Exp Cell Res. 1979 Aug;122(1):203–218. doi: 10.1016/0014-4827(79)90575-5. [DOI] [PubMed] [Google Scholar]
  6. Cole K. S., Curtis H. J. ELECTRIC IMPEDANCE OF SINGLE MARINE EGGS. J Gen Physiol. 1938 May 20;21(5):591–599. doi: 10.1085/jgp.21.5.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dale B., DeFelice L. J., Ehrenstein G. Injection of a soluble sperm fraction into sea-urchin eggs triggers the cortical reaction. Experientia. 1985 Aug 15;41(8):1068–1070. doi: 10.1007/BF01952148. [DOI] [PubMed] [Google Scholar]
  8. Fernandez J. M., Neher E., Gomperts B. D. Capacitance measurements reveal stepwise fusion events in degranulating mast cells. 1984 Nov 29-Dec 5Nature. 312(5993):453–455. doi: 10.1038/312453a0. [DOI] [PubMed] [Google Scholar]
  9. Fishman H. M. Patch voltage clamp of squid axon membrane. J Membr Biol. 1975 Dec 4;24(3-4):265–277. doi: 10.1007/BF01868627. [DOI] [PubMed] [Google Scholar]
  10. García-Soto J., González-Martínez M., de De la Torre L., Darszon A. Internal pH can regulate Ca2+ uptake and the acrosome reaction in sea urchin sperm. Dev Biol. 1987 Mar;120(1):112–120. doi: 10.1016/0012-1606(87)90109-6. [DOI] [PubMed] [Google Scholar]
  11. Gould M., Stephano J. L. Electrical responses of eggs to acrosomal protein similar to those induced by sperm. Science. 1987 Mar 27;235(4796):1654–1656. doi: 10.1126/science.3823908. [DOI] [PubMed] [Google Scholar]
  12. Guerrero A., Sánchez J. A., Darszon A. Single-channel activity in sea urchin sperm revealed by the patch-clamp technique. FEBS Lett. 1987 Aug 17;220(2):295–298. doi: 10.1016/0014-5793(87)80833-5. [DOI] [PubMed] [Google Scholar]
  13. HIRAMOTO Y. MECHANICAL PROPERTIES OF SEA URCHIN EGGS. II. CHANGES IN MECHANICAL PROPERTIES FROM FERTILIZATION TO CLEAVAGE. Exp Cell Res. 1963 Oct;32:76–89. doi: 10.1016/0014-4827(63)90070-3. [DOI] [PubMed] [Google Scholar]
  14. Hinkley R. E., Wright B. D., Lynn J. W. Rapid visual detection of sperm-egg fusion using the DNA-specific fluorochrome Hoechst 33342. Dev Biol. 1986 Nov;118(1):148–154. doi: 10.1016/0012-1606(86)90082-5. [DOI] [PubMed] [Google Scholar]
  15. Iwao Y., Jaffe L. A. Evidence that the voltage-dependent component in the fertilization process is contributed by the sperm. Dev Biol. 1989 Aug;134(2):446–451. doi: 10.1016/0012-1606(89)90117-6. [DOI] [PubMed] [Google Scholar]
  16. Jaffe L. A., Cross N. L. Electrical regulation of sperm-egg fusion. Annu Rev Physiol. 1986;48:191–200. doi: 10.1146/annurev.ph.48.030186.001203. [DOI] [PubMed] [Google Scholar]
  17. Jaffe L. A., Cross N. L., Picheral B. Studies of the voltage-dependent polyspermy block using cross-species fertilization of amphibians. Dev Biol. 1983 Aug;98(2):319–326. doi: 10.1016/0012-1606(83)90362-7. [DOI] [PubMed] [Google Scholar]
  18. Jaffe L. A. Fast block to polyspermy in sea urchin eggs is electrically mediated. Nature. 1976 May 6;261(5555):68–71. doi: 10.1038/261068a0. [DOI] [PubMed] [Google Scholar]
  19. Jaffe L. A. First messengers at fertilization. J Reprod Fertil Suppl. 1990;42:107–116. [PubMed] [Google Scholar]
  20. Jaffe L. A., Gould-Somero M., Holland L. Z. Studies of the mechanism of the electrical polyspermy block using voltage clamp during cross-species fertilization. J Cell Biol. 1982 Mar;92(3):616–621. doi: 10.1083/jcb.92.3.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jaffe L. A., Hagiwara S., Kado R. T. The time course of cortical vesicle fusion in sea urchin eggs observed as membrane capacitance changes. Dev Biol. 1978 Nov;67(1):243–248. doi: 10.1016/0012-1606(78)90314-7. [DOI] [PubMed] [Google Scholar]
  22. Joshi C., Fernandez J. M. Capacitance measurements. An analysis of the phase detector technique used to study exocytosis and endocytosis. Biophys J. 1988 Jun;53(6):885–892. doi: 10.1016/S0006-3495(88)83169-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kane R. E. Membrane conductance patterns during fertilization are sperm dependent in two sea urchin species. Dev Biol. 1990 Oct;141(2):330–343. doi: 10.1016/0012-1606(90)90389-z. [DOI] [PubMed] [Google Scholar]
  24. Lindau M., Fernandez J. M. IgE-mediated degranulation of mast cells does not require opening of ion channels. Nature. 1986 Jan 9;319(6049):150–153. doi: 10.1038/319150a0. [DOI] [PubMed] [Google Scholar]
  25. Lindau M., Neher E. Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflugers Arch. 1988 Feb;411(2):137–146. doi: 10.1007/BF00582306. [DOI] [PubMed] [Google Scholar]
  26. Loewenstein W. R. Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev. 1981 Oct;61(4):829–913. doi: 10.1152/physrev.1981.61.4.829. [DOI] [PubMed] [Google Scholar]
  27. Longo F. J., Lynn J. W., McCulloh D. H., Chambers E. L. Correlative ultrastructural and electrophysiological studies of sperm-egg interactions of the sea urchin, Lytechinus variegatus. Dev Biol. 1986 Nov;118(1):155–166. doi: 10.1016/0012-1606(86)90083-7. [DOI] [PubMed] [Google Scholar]
  28. Lynn J. W., Chambers E. L. Voltage clamp studies of fertilization in sea urchin eggs. I. Effect of clamped membrane potential on sperm entry, activation, and development. Dev Biol. 1984 Mar;102(1):98–109. doi: 10.1016/0012-1606(84)90178-7. [DOI] [PubMed] [Google Scholar]
  29. Lynn J. W., McCulloh D. H., Chambers E. L. Voltage clamp studies of fertilization in sea urchin eggs. II. Current patterns in relation to sperm entry, nonentry, and activation. Dev Biol. 1988 Aug;128(2):305–323. doi: 10.1016/0012-1606(88)90294-1. [DOI] [PubMed] [Google Scholar]
  30. McCulloh D. H., Chambers E. L. A localized zone of increased conductance progresses over the surface of the sea urchin egg during fertilization. J Gen Physiol. 1991 Mar;97(3):579–604. doi: 10.1085/jgp.97.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McCulloh D. H., Lynn J. W., Chambers E. L. Membrane depolarization facilitates sperm entry, large fertilization cone formation, and prolonged current responses in sea urchin oocytes. Dev Biol. 1987 Nov;124(1):177–190. doi: 10.1016/0012-1606(87)90470-2. [DOI] [PubMed] [Google Scholar]
  32. Neher E., Lux H. D. Voltage clamp on Helix pomatia neuronal membrane; current measurement over a limited area of the soma surface. Pflugers Arch. 1969;311(3):272–277. doi: 10.1007/BF00590532. [DOI] [PubMed] [Google Scholar]
  33. Neher E., Marty A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6712–6716. doi: 10.1073/pnas.79.21.6712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Palade G. E., Bruns R. R. Structural modulations of plasmalemmal vesicles. J Cell Biol. 1968 Jun;37(3):633–649. doi: 10.1083/jcb.37.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schackmann R. W., Christen R., Shapiro B. M. Measurement of plasma membrane and mitochondrial potentials in sea urchin sperm. Changes upon activation and induction of the acrosome reaction. J Biol Chem. 1984 Nov 25;259(22):13914–13922. [PubMed] [Google Scholar]
  36. Schackmann R. W., Christen R., Shapiro B. M. Membrane potential depolarization and increased intracellular pH accompany the acrosome reaction of sea urchin sperm. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6066–6070. doi: 10.1073/pnas.78.10.6066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schroeder T. E. Expressions of the prefertilization polar axis in sea urchin eggs. Dev Biol. 1980 Oct;79(2):428–443. doi: 10.1016/0012-1606(80)90128-1. [DOI] [PubMed] [Google Scholar]
  38. Schroeder T. E. Surface area change at fertilization: resorption of the mosaic membrane. Dev Biol. 1979 Jun;70(2):306–326. doi: 10.1016/0012-1606(79)90030-7. [DOI] [PubMed] [Google Scholar]
  39. Spray D. C., Burt J. M. Structure-activity relations of the cardiac gap junction channel. Am J Physiol. 1990 Feb;258(2 Pt 1):C195–C205. doi: 10.1152/ajpcell.1990.258.2.C195. [DOI] [PubMed] [Google Scholar]
  40. Spray D. C., Saez J. C., Brosius D., Bennett M. V., Hertzberg E. L. Isolated liver gap junctions: gating of transjunctional currents is similar to that in intact pairs of rat hepatocytes. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5494–5497. doi: 10.1073/pnas.83.15.5494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Whitaker M. J., Steinhardt R. A. Evidence in support of the hypothesis of an electrically mediated fast block to polyspermy in sea urchin eggs. Dev Biol. 1983 Jan;95(1):244–248. doi: 10.1016/0012-1606(83)90024-6. [DOI] [PubMed] [Google Scholar]
  42. Wilson W. A., Goldner M. M. Voltage clamping with a single microelectrode. J Neurobiol. 1975 Jul;6(4):411–422. doi: 10.1002/neu.480060406. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES