Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1992 Feb 1;99(2):177–197. doi: 10.1085/jgp.99.2.177

Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia

PMCID: PMC2216610  PMID: 1613482

Abstract

Oxygen tension (PO2) was measured with microelectrodes within the retina of anesthetized cats during normoxia and hypoxemia (i.e., systemic hypoxia), and photoreceptor oxygen consumption was determined by fitting PO2 measurements to a model of steady-state oxygen diffusion and consumption. Choroidal PO2 fell linearly during hypoxemia, about 0.64 mmHg/mmHg decrease in arterial PO2 (PaO2). The choroidal circulation provided approximately 91% of the photoreceptors' oxygen supply under dark-adapted conditions during both normoxia and hypoxemia. In light adaptation the choroid supplied all of the oxygen during normoxia, but at PaO2's less than 60 mmHg the retinal circulation supplied approximately 10% of the oxygen. In the dark- adapted retina the decrease in choroidal PO2 caused a large decrease in photoreceptor oxygen consumption, from approximately 5.1 ml O2/100 g.min during normoxia to 2.6 ml O2/100 g.min at a PaO2 of 50 mmHg. When the retina was adapted to a rod saturating background, normoxic oxygen consumption was approximately 33% of the dark-adapted value, and hypoxemia caused almost no change in oxygen consumption. This difference in metabolic effects of hypoxemia in light and dark explains why the standing potential of the eye and retinal extracellular potassium concentration were previously found to be more affected by hypoxemia in darkness. Frequency histograms of intraretinal PO2 were used to characterize the oxygenation of the vascularized inner half of the retina, where the oxygen distribution is heterogeneous and simple diffusion models cannot be used. Inner retinal PO2 during normoxia was relatively low: 18 +/- 12 mmHg (mean and SD; n = 8,328 values from 36 profiles) in dark adaptation, and significantly lower, 13 +/- 6 mmHg (n = 4,349 values from 19 profiles) in light adaptation. Even in the dark- adapted retina, 30% of the values were less than 10 mmHg. The mean PO2 in the inner (i.e., proximal) half of the retina was well regulated during hypoxemia. In dark adaptation it was significantly reduced only at PaO2's less than 45 mmHg, and it was reduced less at these PaO2's in light adaptation.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alder V. A., Ben-Nun J., Cringle S. J. PO2 profiles and oxygen consumption in cat retina with an occluded retinal circulation. Invest Ophthalmol Vis Sci. 1990 Jun;31(6):1029–1034. [PubMed] [Google Scholar]
  2. Alder V. A., Cringle S. J., Constable I. J. The retinal oxygen profile in cats. Invest Ophthalmol Vis Sci. 1983 Jan;24(1):30–36. [PubMed] [Google Scholar]
  3. Alm A., Bill A. The oxygen supply to the retina. I. Effects of changes in intraocular and arterial blood pressures, and in arterial P O2 and P CO2 on the oxygen tension in the vitreous body of the cat. Acta Physiol Scand. 1972 Feb;84(2):261–274. doi: 10.1111/j.1748-1716.1972.tb05177.x. [DOI] [PubMed] [Google Scholar]
  4. Bill A., Sperber G. O. Control of retinal and choroidal blood flow. Eye (Lond) 1990;4(Pt 2):319–325. doi: 10.1038/eye.1990.43. [DOI] [PubMed] [Google Scholar]
  5. Clark D. K., Erdmann W., Halsey J. H., Strong E. Oxygen diffusion, conductivity and solubility coefficients in the microarea of the brain. (Measurements with noble metal microelectrodes). Adv Exp Med Biol. 1977 Jul 4;94:697–704. doi: 10.1007/978-1-4684-8890-6_96. [DOI] [PubMed] [Google Scholar]
  6. Enroth-Cugell C., Goldstick T. K., Linsenmeier R. A. The contrast sensitivity of cat retinal ganglion cells at reduced oxygen tensions. J Physiol. 1980 Jul;304:59–81. doi: 10.1113/jphysiol.1980.sp013310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Enroth-Cugell C., Pinto L. H. Gallamine triethiodide (flaxedil) and cat retinal ganglion cell responses. J Physiol. 1970 Jul;208(3):677–689. doi: 10.1113/jphysiol.1970.sp009142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eperon G., Johnson M., David N. J. The effect of arterial PO2 on relative retinal blood flow in monkeys. Invest Ophthalmol. 1975 May;14(5):342–352. [PubMed] [Google Scholar]
  9. Feke G. T., Zuckerman R., Green G. J., Weiter J. J. Response of human retinal blood flow to light and dark. Invest Ophthalmol Vis Sci. 1983 Jan;24(1):136–141. [PubMed] [Google Scholar]
  10. Feng Z. C., Roberts E. L., Jr, Sick T. J., Rosenthal M. Depth profile of local oxygen tension and blood flow in rat cerebral cortex, white matter and hippocampus. Brain Res. 1988 Apr 5;445(2):280–288. doi: 10.1016/0006-8993(88)91190-0. [DOI] [PubMed] [Google Scholar]
  11. Friedman E., Chandra S. R. Choroidal blood flow. 3. Effects of oxygen and carbon dioxide. Arch Ophthalmol. 1972 Jan;87(1):70–71. doi: 10.1001/archopht.1972.01000020072015. [DOI] [PubMed] [Google Scholar]
  12. GRAYMORE C. Metabolism of the developing retina. I. Aerobic and anaerobic glycolysis in the developing rat retina. Br J Ophthalmol. 1959 Jan;43(1):34–39. doi: 10.1136/bjo.43.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ganfield R. A., Nair P., Whalen W. J. Mass transfer, storage, and utilization of O2 in cat cerebral cortex. Am J Physiol. 1970 Sep;219(3):814–821. doi: 10.1152/ajplegacy.1970.219.3.814. [DOI] [PubMed] [Google Scholar]
  14. Gronczewski J., Leniger-Follert E. Relationship between microflow, local tissue Po2 and extracellular activities of potassium and hydrogen ions in the cat brain during intraarterial infusion of ammonium acetate. Adv Exp Med Biol. 1984;169:291–296. doi: 10.1007/978-1-4684-1188-1_23. [DOI] [PubMed] [Google Scholar]
  15. Harrison D. K., Kessler M., Knauf S. K. Regulation of capillary blood flow and oxygen supply in skeletal muscle in dogs during hypoxaemia. J Physiol. 1990 Jan;420:431–446. doi: 10.1113/jphysiol.1990.sp017921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Haugh L. M., Linsenmeier R. A., Goldstick T. K. Mathematical models of the spatial distribution of retinal oxygen tension and consumption, including changes upon illumination. Ann Biomed Eng. 1990;18(1):19–36. doi: 10.1007/BF02368415. [DOI] [PubMed] [Google Scholar]
  17. Kessler M. Oxygen supply to tissue in mormoxia and in oxygen deficiency. Microvasc Res. 1974 Nov;8(3):283–290. doi: 10.1016/s0026-2862(74)80004-x. [DOI] [PubMed] [Google Scholar]
  18. Leniger-Follert E., Lübbers D. W., Wrabetz W. Regulation of local tissue PO2 of the brain cortex at different arterial O2 pressures. Pflugers Arch. 1975 Aug 29;359(1-2):81–95. doi: 10.1007/BF00581279. [DOI] [PubMed] [Google Scholar]
  19. Leniger-Follert E. Oxygen supply and microcirculation of the brain cortex. Adv Exp Med Biol. 1985;191:3–19. doi: 10.1007/978-1-4684-3291-6_1. [DOI] [PubMed] [Google Scholar]
  20. Linsenmeier R. A. Effects of light and darkness on oxygen distribution and consumption in the cat retina. J Gen Physiol. 1986 Oct;88(4):521–542. doi: 10.1085/jgp.88.4.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Linsenmeier R. A. Electrophysiological consequences of retinal hypoxia. Graefes Arch Clin Exp Ophthalmol. 1990;228(2):143–150. doi: 10.1007/BF00935724. [DOI] [PubMed] [Google Scholar]
  22. Linsenmeier R. A., Mines A. H., Steinberg R. H. Effects of hypoxia and hypercapnia on the light peak and electroretinogram of the cat. Invest Ophthalmol Vis Sci. 1983 Jan;24(1):37–46. [PubMed] [Google Scholar]
  23. Linsenmeier R. A., Steinberg R. H. Effects of hypoxia on potassium homeostasis and pigment epithelial cells in the cat retina. J Gen Physiol. 1984 Dec;84(6):945–970. doi: 10.1085/jgp.84.6.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Linsenmeier R. A., Steinberg R. H. Mechanisms of hypoxic effects on the cat DC electroretinogram. Invest Ophthalmol Vis Sci. 1986 Sep;27(9):1385–1394. [PubMed] [Google Scholar]
  25. Linsenmeier R. A., Yancey C. M. Improved fabrication of double-barreled recessed cathode O2 microelectrodes. J Appl Physiol (1985) 1987 Dec;63(6):2554–2557. doi: 10.1152/jappl.1987.63.6.2554. [DOI] [PubMed] [Google Scholar]
  26. Marmor M. F., Donovan W. J., Gaba D. M. Effects of hypoxia and hyperoxia on the human standing potential. Doc Ophthalmol. 1985 Oct 15;60(4):347–352. doi: 10.1007/BF00158923. [DOI] [PubMed] [Google Scholar]
  27. Niemeyer G., Nagahara K., Demant E. Effects of changes in arterial Po2 and Pco2 on the electroretinogram in the cat. Invest Ophthalmol Vis Sci. 1982 Nov;23(5):678–683. [PubMed] [Google Scholar]
  28. REINERT H. URETHANE HYPERGLYCAEMIA AND HYPOTHALAMIC ACTIVATION. Nature. 1964 Nov 28;204:889–891. doi: 10.1038/204889a0. [DOI] [PubMed] [Google Scholar]
  29. Roh H. D., Goldstick T. K., Linsenmeier R. A. Spatial variation of the local tissue oxygen diffusion coefficient measured in situ in the cat retina and cornea. Adv Exp Med Biol. 1990;277:127–136. doi: 10.1007/978-1-4684-8181-5_17. [DOI] [PubMed] [Google Scholar]
  30. Schuchhardt S. Myocardial oxygen pressure: mirror of oxygen supply. Adv Exp Med Biol. 1985;191:21–35. doi: 10.1007/978-1-4684-3291-6_2. [DOI] [PubMed] [Google Scholar]
  31. Sebag J., Delori F. C., Feke G. T., Weiter J. J. Effects of optic atrophy on retinal blood flow and oxygen saturation in humans. Arch Ophthalmol. 1989 Feb;107(2):222–226. doi: 10.1001/archopht.1989.01070010228027. [DOI] [PubMed] [Google Scholar]
  32. Shimazaki H., Oakley B., 2nd Reaccumulation of [K+]o in the toad retina during maintained illumination. J Gen Physiol. 1984 Sep;84(3):475–504. doi: 10.1085/jgp.84.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Steinberg R. H., Reid M., Lacy P. L. The distribution of rods and cones in the retina of the cat (Felis domesticus). J Comp Neurol. 1973 Mar 15;148(2):229–248. doi: 10.1002/cne.901480209. [DOI] [PubMed] [Google Scholar]
  34. Tsacopoulos M. Le rôle des facteurs métaboliques dans la régulation du débit sanguin rétinien. Adv Ophthalmol. 1979;39:233–273. [PubMed] [Google Scholar]
  35. Törnquist P., Alm A. Retinal and choroidal contribution to retinal metabolism in vivo. A study in pigs. Acta Physiol Scand. 1979 Jul;106(3):351–357. doi: 10.1111/j.1748-1716.1979.tb06409.x. [DOI] [PubMed] [Google Scholar]
  36. Winkler B. S. Buffer dependence of retinal glycolysis and ERG potentials. Exp Eye Res. 1986 Jun;42(6):585–593. doi: 10.1016/0014-4835(86)90048-5. [DOI] [PubMed] [Google Scholar]
  37. Yancey C. M., Linsenmeier R. A. Oxygen distribution and consumption in the cat retina at increased intraocular pressure. Invest Ophthalmol Vis Sci. 1989 Apr;30(4):600–611. [PubMed] [Google Scholar]
  38. Zuckerman R., Weiter J. J. Oxygen transport in the bullfrog retina. Exp Eye Res. 1980 Feb;30(2):117–127. doi: 10.1016/0014-4835(80)90106-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES