Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1992 Feb 1;99(2):263–290. doi: 10.1085/jgp.99.2.263

Alpha-1-adrenergic modulation of K and Cl transport in bovine retinal pigment epithelium

PMCID: PMC2216611  PMID: 1319462

Abstract

Intracellular microelectrode techniques were used to characterize the electrical responses of the bovine retinal pigment epithelium (RPE)- choroid to epinephrine (EP) and several other catecholamines that are putative paracrine signals between the neural retina and the RPE. Nanomolar amounts of EP or norepinephrine (NEP), added to the apical bath, caused a series of conductance and voltage changes, first at the basolateral or choroid-facing membrane and then at the apical or retina- facing membrane. The relative potency of several adrenergic agonists and antagonists indicates that EP modulation of RPE transport begins with the activation of apical alpha-1-adrenergic receptors. The membrane-permeable calcium (Ca2+) buffer, amyl-BAPTA (1,2-bis(o- aminophenoxy)-ethane-N,N,N',N' tetraacetic acid) inhibited the EP- induced voltage and conductance changes by approximately 50-80%, implicating [Ca2+]i as a second messenger. This conclusion is supported by experiments using the Ca2+ ionophore A23187, which mimics the effects of EP. The basolateral membrane voltage response to EP was blocked by lowering cell Cl, by the presence of DIDS (4,4'- diisothiocyanostilbene-2,2'-disulfonic acid) in the basal bath, and by current clamping VB to the Cl equilibrium potential. In the latter experiments the EP-induced conductance changes were unaltered, indicating that EP increases basolateral membrane Cl conductance independent of voltage. The EP-induced change in basolateral Cl conductance was followed by a secondary decrease in apical membrane K conductance (approximately 50%) as measured by delta [K]o-induced diffusion potentials. Decreasing apical K from 5 to 2 mM in the presence of EP mimicked the effect of light on RPE apical and basolateral membrane voltage. These results indicate that EP may be an important paracrine signal that provides exquisite control of RPE physiology.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apkon M., Nerbonne J. M. Alpha 1-adrenergic agonists selectively suppress voltage-dependent K+ current in rat ventricular myocytes. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8756–8760. doi: 10.1073/pnas.85.22.8756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bok D. Retinal photoreceptor-pigment epithelium interactions. Friedenwald lecture. Invest Ophthalmol Vis Sci. 1985 Dec;26(12):1659–1694. [PubMed] [Google Scholar]
  3. Borgula G. A., Karwoski C. J., Steinberg R. H. Light-evoked changes in extracellular pH in frog retina. Vision Res. 1989;29(9):1069–1077. doi: 10.1016/0042-6989(89)90054-0. [DOI] [PubMed] [Google Scholar]
  4. Bylund D. B., U'Prichard D. C. Characterization of alpha 1- and alpha 2-adrenergic receptors. Int Rev Neurobiol. 1983;24:343–431. [PubMed] [Google Scholar]
  5. Cohen J., Hadjiconstantinou M. Identification of epinephrine and phenylethanolamine N-methyltransferase activity in rat retina. Fed Proc. 1984 Sep;43(12):2725–2728. [PubMed] [Google Scholar]
  6. Cotecchia S., Kobilka B. K., Daniel K. W., Nolan R. D., Lapetina E. Y., Caron M. G., Lefkowitz R. J., Regan J. W. Multiple second messenger pathways of alpha-adrenergic receptor subtypes expressed in eukaryotic cells. J Biol Chem. 1990 Jan 5;265(1):63–69. [PubMed] [Google Scholar]
  7. Dacey D. M. Dopamine-accumulating retinal neurons revealed by in vitro fluorescence display a unique morphology. Science. 1988 May 27;240(4856):1196–1198. doi: 10.1126/science.3375811. [DOI] [PubMed] [Google Scholar]
  8. Dawson D. C. Na and Cl transport across the isolated turtle colon: parallel pathways for transmural ion movement. J Membr Biol. 1977 Dec 15;37(3-4):213–233. doi: 10.1007/BF01940933. [DOI] [PubMed] [Google Scholar]
  9. Dearry A., Burnside B. Light-induced dopamine release from teleost retinas acts as a light-adaptive signal to the retinal pigment epithelium. J Neurochem. 1989 Sep;53(3):870–878. doi: 10.1111/j.1471-4159.1989.tb11785.x. [DOI] [PubMed] [Google Scholar]
  10. Exton J. H. Molecular mechanisms involved in alpha-adrenergic responses. Mol Cell Endocrinol. 1981 Sep;23(3):233–264. doi: 10.1016/0303-7207(81)90123-4. [DOI] [PubMed] [Google Scholar]
  11. Fedida D., Shimoni Y., Giles W. R. A novel effect of norepinephrine on cardiac cells is mediated by alpha 1-adrenoceptors. Am J Physiol. 1989 May;256(5 Pt 2):H1500–H1504. doi: 10.1152/ajpheart.1989.256.5.H1500. [DOI] [PubMed] [Google Scholar]
  12. Frambach D. A., Valentine J. L., Weiter J. J. Initial observations of rabbit retinal pigment epithelium-choroid-sclera preparations. Invest Ophthalmol Vis Sci. 1988 May;29(5):814–817. [PubMed] [Google Scholar]
  13. Gallemore R. P., Steinberg R. H. Effects of DIDS on the chick retinal pigment epithelium. II. Mechanism of the light peak and other responses originating at the basal membrane. J Neurosci. 1989 Jun;9(6):1977–1984. doi: 10.1523/JNEUROSCI.09-06-01977.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gallemore R. P., Steinberg R. H. Effects of dopamine on the chick retinal pigment epithelium. Membrane potentials and light-evoked responses. Invest Ophthalmol Vis Sci. 1990 Jan;31(1):67–80. [PubMed] [Google Scholar]
  15. Gallemore R. P., Steinberg R. H. Effects of dopamine on the chick retinal pigment epithelium. Membrane potentials and light-evoked responses. Invest Ophthalmol Vis Sci. 1990 Jan;31(1):67–80. [PubMed] [Google Scholar]
  16. Griff E. R., Steinberg R. H. Changes in apical [K+] produce delayed basal membrane responses of the retinal pigment epithelium in the gecko. J Gen Physiol. 1984 Feb;83(2):193–211. doi: 10.1085/jgp.83.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. HAEGGENDAL J., MALMFORS T. EVIDENCE OF DOPAMINE-CONTAINING NEURONS IN THE RETINA OF RABBITS. Acta Physiol Scand. 1963 Nov;59:295–296. doi: 10.1111/j.1748-1716.1963.tb02744.x. [DOI] [PubMed] [Google Scholar]
  18. Hadjiconstantinou M., Cohen J., Neff N. H. Epinephrine: a potential neurotransmitter in retina. J Neurochem. 1983 Nov;41(5):1440–1444. doi: 10.1111/j.1471-4159.1983.tb00843.x. [DOI] [PubMed] [Google Scholar]
  19. Hadjiconstantinou M., Mariani A. P., Panula P., Joh T. H., Neff N. H. Immunohistochemical evidence for epinephrine-containing retinal amacrine cells. Neuroscience. 1984 Oct;13(2):547–551. doi: 10.1016/0306-4522(84)90247-1. [DOI] [PubMed] [Google Scholar]
  20. Hofmann H., Niemeyer G. Calcium blocks selectively the EOG-light peak. Doc Ophthalmol. 1985 Oct 15;60(4):361–368. doi: 10.1007/BF00158925. [DOI] [PubMed] [Google Scholar]
  21. Hughes B. A., Miller S. S., Farber D. B. Adenylate cyclase stimulation alters transport in frog retinal pigment epithelium. Am J Physiol. 1987 Apr;252(4 Pt 1):C385–C395. doi: 10.1152/ajpcell.1987.252.4.C385. [DOI] [PubMed] [Google Scholar]
  22. Hughes B. A., Miller S. S., Joseph D. P., Edelman J. L. cAMP stimulates the Na+-K+ pump in frog retinal pigment epithelium. Am J Physiol. 1988 Jan;254(1 Pt 1):C84–C98. doi: 10.1152/ajpcell.1988.254.1.C84. [DOI] [PubMed] [Google Scholar]
  23. Hughes B. A., Miller S. S., Machen T. E. Effects of cyclic AMP on fluid absorption and ion transport across frog retinal pigment epithelium. Measurements in the open-circuit state. J Gen Physiol. 1984 Jun;83(6):875–899. doi: 10.1085/jgp.83.6.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Immel J., Steinberg R. H. Spatial buffering of K+ by the retinal pigment epithelium in frog. J Neurosci. 1986 Nov;6(11):3197–3204. doi: 10.1523/JNEUROSCI.06-11-03197.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Joseph D. P., Miller S. S. Apical and basal membrane ion transport mechanisms in bovine retinal pigment epithelium. J Physiol. 1991 Apr;435:439–463. doi: 10.1113/jphysiol.1991.sp018518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Liedtke C. M. Alpha-adrenergic regulation of Na-Cl cotransport in human airway epithelium. Am J Physiol. 1989 Aug;257(2 Pt 1):L125–L129. doi: 10.1152/ajplung.1989.257.2.L125. [DOI] [PubMed] [Google Scholar]
  27. Linsenmeier R. A., Steinberg R. H. Delayed basal hyperpolarization of cat retinal pigment epithelium and its relation to the fast oscillation of the DC electroretinogram. J Gen Physiol. 1984 Feb;83(2):213–232. doi: 10.1085/jgp.83.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Livsey C. T., Huang B., Xu J., Karwoski C. J. Light-evoked changes in extracellular calcium concentration in frog retina. Vision Res. 1990;30(6):853–861. doi: 10.1016/0042-6989(90)90054-o. [DOI] [PubMed] [Google Scholar]
  29. Miller S. S., Edelman J. L. Active ion transport pathways in the bovine retinal pigment epithelium. J Physiol. 1990 May;424:283–300. doi: 10.1113/jphysiol.1990.sp018067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Miller S. S., Steinberg R. H. Passive ionic properties of frog retinal pigment epithelium. J Membr Biol. 1977 Sep 15;36(4):337–372. doi: 10.1007/BF01868158. [DOI] [PubMed] [Google Scholar]
  31. Miller S. S., Steinberg R. H. Potassium modulation of taurine transport across the frog retinal pigment epithelium. J Gen Physiol. 1979 Aug;74(2):237–259. doi: 10.1085/jgp.74.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Miller S. S., Steinberg R. H. Potassium transport across the frog retinal pigment epithelium. J Membr Biol. 1982;67(3):199–209. doi: 10.1007/BF01868661. [DOI] [PubMed] [Google Scholar]
  33. Miller S., Farber D. Cyclic AMP modulation of ion transport across frog retinal pigment epithelium. Measurements in the short-circuit state. J Gen Physiol. 1984 Jun;83(6):853–874. doi: 10.1085/jgp.83.6.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Minneman K. P. Alpha 1-adrenergic receptor subtypes, inositol phosphates, and sources of cell Ca2+. Pharmacol Rev. 1988 Jun;40(2):87–119. [PubMed] [Google Scholar]
  35. Nilsson S. E., Skoog K. O. Covariation of the simultaneously recorded c-wave and standing potential of the human eye. Acta Ophthalmol (Copenh) 1975 Nov;53(5):721–730. doi: 10.1111/j.1755-3768.1975.tb01187.x. [DOI] [PubMed] [Google Scholar]
  36. Oakley B., 2nd, Green D. G. Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. J Neurophysiol. 1976 Sep;39(5):1117–1133. doi: 10.1152/jn.1976.39.5.1117. [DOI] [PubMed] [Google Scholar]
  37. Oakley B., 2nd Potassium and the photoreceptor-dependent pigment epithelial hyperpolarization. J Gen Physiol. 1977 Oct;70(4):405–425. doi: 10.1085/jgp.70.4.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Osborne N. N., Ghazi H. Does noradrenaline behave as a neurotransmitter or hormone in the mammalian retina? Neurosci Res Suppl. 1988;8:S197–S210. doi: 10.1016/0921-8696(88)90017-5. [DOI] [PubMed] [Google Scholar]
  39. Rasmussen H., Barrett P. Q. Calcium messenger system: an integrated view. Physiol Rev. 1984 Jul;64(3):938–984. doi: 10.1152/physrev.1984.64.3.938. [DOI] [PubMed] [Google Scholar]
  40. Sato T., Yoneyama T., Kim H. K., Suzuki T. A. Effect of dopamine and haloperidol on the c-wave and light peak of light-induced retinal responses in chick eye. Doc Ophthalmol. 1987 Jan;65(1):87–95. doi: 10.1007/BF00162724. [DOI] [PubMed] [Google Scholar]
  41. Smith J. J., McCann J. D., Welsh M. J. Bradykinin stimulates airway epithelial Cl- secretion via two second messenger pathways. Am J Physiol. 1990 Jun;258(6 Pt 1):L369–L377. doi: 10.1152/ajplung.1990.258.6.L369. [DOI] [PubMed] [Google Scholar]
  42. Steinberg R. H., Schmidt R., Brown K. T. Intracellular responses to light from cat pigment epithelium: origin of the electroretinogram c-wave. Nature. 1970 Aug 15;227(5259):728–730. doi: 10.1038/227728a0. [DOI] [PubMed] [Google Scholar]
  43. Tabcharani J. A., Jensen T. J., Riordan J. R., Hanrahan J. W. Bicarbonate permeability of the outwardly rectifying anion channel. J Membr Biol. 1989 Dec;112(2):109–122. doi: 10.1007/BF01871272. [DOI] [PubMed] [Google Scholar]
  44. Uehara F., Matthes M. T., Yasumura D., LaVail M. M. Light-evoked changes in the interphotoreceptor matrix. Science. 1990 Jun 29;248(4963):1633–1636. doi: 10.1126/science.2194288. [DOI] [PubMed] [Google Scholar]
  45. Weleber R. G. Fast and slow oscillations of the electro-oculogram in Best's macular dystrophy and retinitis pigmentosa. Arch Ophthalmol. 1989 Apr;107(4):530–537. doi: 10.1001/archopht.1989.01070010544028. [DOI] [PubMed] [Google Scholar]
  46. Welsh M. J. Adrenergic regulation of ion transport by primary cultures of canine tracheal epithelium: cellular electrophysiology. J Membr Biol. 1986;91(2):121–128. doi: 10.1007/BF01925789. [DOI] [PubMed] [Google Scholar]
  47. la Cour M., Lund-Andersen H., Zeuthen T. Potassium transport of the frog retinal pigment epithelium: autoregulation of potassium activity in the subretinal space. J Physiol. 1986 Jun;375:461–479. doi: 10.1113/jphysiol.1986.sp016128. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES