Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1992 May 1;99(5):721–746. doi: 10.1085/jgp.99.5.721

Internal magnesium, 2,3-diphosphoglycerate, and the regulation of the steady-state volume of human red blood cells by the Na/K/2Cl cotransport system

PMCID: PMC2216615  PMID: 1607852

Abstract

This study is concerned with the relationship between the Na/K/Cl cotransport system and the steady-state volume (MCV) of red blood cells. Cotransport rate was determined in unfractionated and density- separated red cells of different MCV from different donors to see whether cotransport differences contribute to the difference in the distribution of MCVs. Cotransport, studied in cells at their original MCVs, was determined as the bumetanide (10 microM)-sensitive 22Na efflux in the presence of ouabain (50 microM) after adjusting cellular Na (Nai) and Ki to achieve near maximal transport rates. This condition was chosen to rule out MCV-related differences in Nai and Ki that might contribute to differences in the net chemical driving force for cotransport. We found that in both unfractionated and density-separated red cells the cotransport rate was inversely correlated with MCV. MCV was correlated directly with red cell 2,3-diphosphoglycerate (DPG), whereas total red cell Mg was only slightly elevated in cells with high MCV. Thus intracellular free Mg (Mgifree) is evidently lower in red cells with high 2,3-DPG (i.e., high MCV) and vice versa. Results from flux measurements at their original MCVs, after altering Mgifree with the ionophore A23187, indicated a high Mgi sensitivity of cotransport: depletion of Mgifree inhibited and an elevation of Mgifree increased the cotransport rate. The apparent K0.5 for Mgifree was approximately 0.4 mM. Maximizing Mgifree at optimum Nai and Ki minimized the differences in cotransport rates among the different donors. It is concluded that the relative cotransport rate is regulated for cells in the steady state at their original cell volume, not by the number of copies of the cotransporter but by differences in Mgifree. The interindividual differences in Mgifree, determined primarily by differences in the 2,3-DPG content, are responsible for the differences in the relative cotransport activity that results in an inverse relationship with in vivo differences in MCV. Indirect evidence indicates that the relative cotransport rate, as indexed by Mgifree, is determined by the phosphorylated level of the cotransport system.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adragna N. C., Canessa M. L., Solomon H., Slater E., Tosteson D. C. Red cell lithium-sodium countertransport and sodium-potassium cotransport in patients with essential hypertension. Hypertension. 1982 Nov-Dec;4(6):795–804. doi: 10.1161/01.hyp.4.6.795. [DOI] [PubMed] [Google Scholar]
  2. Adragna N. C., Tosteson D. C. Effect of volume changes on ouabain-insensitive net outward cation movements in human red cells. J Membr Biol. 1984;78(1):43–52. doi: 10.1007/BF01872531. [DOI] [PubMed] [Google Scholar]
  3. Astrup J. Sodium and potassium in human red cells: variations among centrifuged cells. Scand J Clin Lab Invest. 1974 May;33(3):231–237. doi: 10.1080/00365517409082491. [DOI] [PubMed] [Google Scholar]
  4. BERNSTEIN R. E. Alterations in metabolic energetics and cation transport during aging of red cells. J Clin Invest. 1959 Sep;38:1572–1586. doi: 10.1172/JCI103936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BORUN E. R., FIGUEROA W. G., PERRY S. M. The distribution of Fe59 tagged human erythrocytes in centrifuged specimens as a function of cell age. J Clin Invest. 1957 May;36(5):676–679. doi: 10.1172/JCI103468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BOWDLER A. J., PRANKERD T. A. STUDIES IN CONGENITAL NON-SPHEROCYTIC HAEMOLYTIC ANAEMIAS WITH SPECIFIC ENZYME DEFECTS. Acta Haematol. 1964 Feb;31:65–78. doi: 10.1159/000209615. [DOI] [PubMed] [Google Scholar]
  7. Blostein R., Drapeau P., Benderoff S., Weigensberg A. M. Changes in Na+-ATPase and Na,K-pump during maturation of sheep reticulocytes. Can J Biochem Cell Biol. 1983 Jan;61(1):23–28. doi: 10.1139/o83-004. [DOI] [PubMed] [Google Scholar]
  8. Brugnara C., Canessa M., Cusi D., Tosteson D. C. Furosemide-sensitive Na and K fluxes in human red cells. Net uphill Na extrusion and equilibrium properties. J Gen Physiol. 1986 Jan;87(1):91–112. doi: 10.1085/jgp.87.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bunn H. F., Ransil B. J., Chao A. The interaction between erythrocyte organic phosphates, magnesium ion, and hemoglobin. J Biol Chem. 1971 Sep 10;246(17):5273–5279. [PubMed] [Google Scholar]
  10. CHALFIN D. Differences between young and mature rabbit erythrocytes. J Cell Physiol. 1956 Apr;47(2):215–243. doi: 10.1002/jcp.1030470204. [DOI] [PubMed] [Google Scholar]
  11. Canessa M., Brugnara C., Cusi D., Tosteson D. C. Modes of operation and variable stoichiometry of the furosemide- sensitive Na and K fluxes in human red cells. J Gen Physiol. 1986 Jan;87(1):113–142. doi: 10.1085/jgp.87.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Canessa M., Fabry M. E., Blumenfeld N., Nagel R. L. Volume-stimulated, Cl(-)-dependent K+ efflux is highly expressed in young human red cells containing normal hemoglobin or HbS. J Membr Biol. 1987;97(2):97–105. doi: 10.1007/BF01869416. [DOI] [PubMed] [Google Scholar]
  13. Cass A., Dalmark M. Equilibrium dialysis of ions in nystatin-treated red cells. Nat New Biol. 1973 Jul 11;244(132):47–49. doi: 10.1038/newbio244047a0. [DOI] [PubMed] [Google Scholar]
  14. Chiancone E., Norne J. E., Forsén S., Antonini E., Wyman J. Nuclear magnetic resonance quadrupole relaxation studies of chloride binding to human oxy- and deoxyhaemoglobin. J Mol Biol. 1972 Oct 14;70(3):675–688. doi: 10.1016/0022-2836(72)90566-9. [DOI] [PubMed] [Google Scholar]
  15. Cohen P., Holmes C. F., Tsukitani Y. Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci. 1990 Mar;15(3):98–102. doi: 10.1016/0968-0004(90)90192-e. [DOI] [PubMed] [Google Scholar]
  16. Duhm J. Effects of 2,3-diphosphoglycerate and other organic phosphate compounds on oxygen affinity and intracellular pH of human erythrocytes. Pflugers Arch. 1971;326(4):341–356. doi: 10.1007/BF00586998. [DOI] [PubMed] [Google Scholar]
  17. Duhm J. Furosemide-sensitive K+ (Rb+) transport in human erythrocytes: modes of operation, dependence on extracellular and intracellular Na+, kinetics, pH dependency and the effect of cell volume and N-ethylmaleimide. J Membr Biol. 1987;98(1):15–32. doi: 10.1007/BF01871042. [DOI] [PubMed] [Google Scholar]
  18. Duhm J., Göbel B. O. Role of the furosemide-sensitive Na+/K+ transport system in determining the steady-state Na+ and K+ content and volume of human erythrocytes in vitro and in vivo. J Membr Biol. 1984;77(3):243–254. doi: 10.1007/BF01870572. [DOI] [PubMed] [Google Scholar]
  19. Duhm J., Göbel B. O. Sodium-lithium exchange and sodium-potassium cotransport in human erythrocytes. Part 1: Evaluation of a simple uptake test to assess the activity of the two transport systems. Hypertension. 1982 Jul-Aug;4(4):468–476. doi: 10.1161/01.hyp.4.4.468. [DOI] [PubMed] [Google Scholar]
  20. Dunham P. B., Hoffman J. F. Active cation transport and ouabain binding in high potassium and low potassium red blood cells of sheep. J Gen Physiol. 1971 Jul;58(1):94–116. doi: 10.1085/jgp.58.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ellory J. C., Flatman P. W., Stewart G. W. Inhibition of human red cell sodium and potassium transport by divalent cations. J Physiol. 1983 Jul;340:1–17. doi: 10.1113/jphysiol.1983.sp014746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Flatman P. W., Lew V. L. Magnesium buffering in intact human red blood cells measured using the ionophore A23187. J Physiol. 1980 Aug;305:13–30. doi: 10.1113/jphysiol.1980.sp013346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Flatman P. W. Mechanisms of magnesium transport. Annu Rev Physiol. 1991;53:259–271. doi: 10.1146/annurev.ph.53.030191.001355. [DOI] [PubMed] [Google Scholar]
  24. Flatman P. W. The effects of magnesium on potassium transport in ferret red cells. J Physiol. 1988 Mar;397:471–487. doi: 10.1113/jphysiol.1988.sp017013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Flatman P., Lew V. L. Use of ionophore A23187 to measure and to control free and bound cytoplasmic Mg in intact red cells. Nature. 1977 May 26;267(5609):360–362. doi: 10.1038/267360a0. [DOI] [PubMed] [Google Scholar]
  26. Frenkel E. J., Graziani M., Schatzmann H. J. ATP requirement of the sodium-dependent magnesium extrusion from human red blood cells. J Physiol. 1989 Jul;414:385–397. doi: 10.1113/jphysiol.1989.sp017694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Funder J., Wieth J. O. Potassium, sodium, and water in normal human red blood cells. Scand J Clin Lab Invest. 1966;18(2):167–180. doi: 10.3109/00365516609051812. [DOI] [PubMed] [Google Scholar]
  28. Furukawa H., Bilezikian J. P., Loeb J. N. Potassium fluxes in the rat reticulocyte. Ouabain sensitivity and changes during maturation. Biochim Biophys Acta. 1981 Dec 21;649(3):625–632. doi: 10.1016/0005-2736(81)90167-x. [DOI] [PubMed] [Google Scholar]
  29. Féray J. C., Garay R. An Na+-stimulated Mg2+-transport system in human red blood cells. Biochim Biophys Acta. 1986 Mar 27;856(1):76–84. doi: 10.1016/0005-2736(86)90012-x. [DOI] [PubMed] [Google Scholar]
  30. Garay R., Adragna N., Canessa M., Tosteson D. Outward sodium and potassium cotransport in human red cells. J Membr Biol. 1981;62(3):169–174. doi: 10.1007/BF01998162. [DOI] [PubMed] [Google Scholar]
  31. Gerber G., Berger H., Jänig G. R., Rapoport S. M. Interaction of haemoglobin with ions. Quantitative description of the state of magnesium, adenosine 5'-triphosphate, 2,3-bisphosphoglycerate, and human haemoglobin under simulated intracellular conditions. Eur J Biochem. 1973 Oct 18;38(3):563–571. doi: 10.1111/j.1432-1033.1973.tb03091.x. [DOI] [PubMed] [Google Scholar]
  32. Gilroy T. E., Brewer G. J., Sing C. F. Genetic control of glycolysis in human erythrocytes. Genetics. 1980 Mar;94(3):719–732. doi: 10.1093/genetics/94.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Gupta R. K., Benovic J. L., Rose Z. B. The determination of the free magnesium level in the human red blood cell by 31P NMR. J Biol Chem. 1978 Sep 10;253(17):6172–6176. [PubMed] [Google Scholar]
  34. Haas M. Properties and diversity of (Na-K-Cl) cotransporters. Annu Rev Physiol. 1989;51:443–457. doi: 10.1146/annurev.ph.51.030189.002303. [DOI] [PubMed] [Google Scholar]
  35. Haas M., Schmidt W. F., 3rd, McManus T. J. Catecholamine-stimulated ion transport in duck red cells. Gradient effects in electrically neutral [Na + K + 2Cl] Co-transport. J Gen Physiol. 1982 Jul;80(1):125–147. doi: 10.1085/jgp.80.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Haidas S., Labie D., Kaplan J. C. 2,3-diphosphoglycerate content and oxygen affinity as a function of red cell age in normal individuals. Blood. 1971 Oct;38(4):463–467. [PubMed] [Google Scholar]
  37. Hoffman J. F., Laris P. C. Determination of membrane potentials in human and Amphiuma red blood cells by means of fluorescent probe. J Physiol. 1974 Jun;239(3):519–552. doi: 10.1113/jphysiol.1974.sp010581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Hoffmann E. K., Simonsen L. O. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev. 1989 Apr;69(2):315–382. doi: 10.1152/physrev.1989.69.2.315. [DOI] [PubMed] [Google Scholar]
  39. Inoue H., Moriyasu M., Hamasaki N. Metabolism of 3-phosphoglyceroyl phosphate in phosphoenolpyruvate-enriched human erythrocytes. J Biol Chem. 1987 Jun 5;262(16):7635–7638. [PubMed] [Google Scholar]
  40. Jennings M. L., Schulz R. K. Okadaic acid inhibition of KCl cotransport. Evidence that protein dephosphorylation is necessary for activation of transport by either cell swelling or N-ethylmaleimide. J Gen Physiol. 1991 Apr;97(4):799–817. doi: 10.1085/jgp.97.4.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Kase H., Iwahashi K., Matsuda Y. K-252a, a potent inhibitor of protein kinase C from microbial origin. J Antibiot (Tokyo) 1986 Aug;39(8):1059–1065. doi: 10.7164/antibiotics.39.1059. [DOI] [PubMed] [Google Scholar]
  42. Kracke G. R., Anatra M. A., Dunham P. B. Asymmetry of Na-K-Cl cotransport in human erythrocytes. Am J Physiol. 1988 Feb;254(2 Pt 1):C243–C250. doi: 10.1152/ajpcell.1988.254.2.C243. [DOI] [PubMed] [Google Scholar]
  43. Kregenow F. M. Osmoregulatory salt transporting mechanisms: control of cell volume in anisotonic media. Annu Rev Physiol. 1981;43:493–505. doi: 10.1146/annurev.ph.43.030181.002425. [DOI] [PubMed] [Google Scholar]
  44. Lee P., Kirk R. G., Hoffman J. F. Interrelations among Na and K content, cell volume, and buoyant density in human red blood cell populations. J Membr Biol. 1984;79(2):119–126. doi: 10.1007/BF01872116. [DOI] [PubMed] [Google Scholar]
  45. Lüdi H., Schatzmann H. J. Some properties of a system for sodium-dependent outward movement of magnesium from metabolizing human red blood cells. J Physiol. 1987 Sep;390:367–382. doi: 10.1113/jphysiol.1987.sp016706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Mairbäurl H., Schobersberger W., Oelz O., Bärtsch P., Eckardt K. U., Bauer C. Unchanged in vivo P50 at high altitude despite decreased erythrocyte age and elevated 2,3-diphosphoglycerate. J Appl Physiol (1985) 1990 Mar;68(3):1186–1194. doi: 10.1152/jappl.1990.68.3.1186. [DOI] [PubMed] [Google Scholar]
  47. Milanick M. A., Hoffman J. F. Ion transport and volume regulation in red blood cells. Ann N Y Acad Sci. 1986;488:174–186. doi: 10.1111/j.1749-6632.1986.tb46556.x. [DOI] [PubMed] [Google Scholar]
  48. Murphy J. R., Wengerd M., Kellermeyer R. W. Erythrocyte O2 affinity: influence of cell density and in vitro changes in hemoglobin concentration. J Lab Clin Med. 1974 Aug;84(2):218–224. [PubMed] [Google Scholar]
  49. POST R. L., JOLLY P. C. The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. Biochim Biophys Acta. 1957 Jul;25(1):118–128. doi: 10.1016/0006-3002(57)90426-2. [DOI] [PubMed] [Google Scholar]
  50. Parker J. C., McManus T. J., Starke L. C., Gitelman H. J. Coordinated regulation of Na/H exchange and [K-Cl] cotransport in dog red cells. J Gen Physiol. 1990 Dec;96(6):1141–1152. doi: 10.1085/jgp.96.6.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Reed P. W. Effects of divalent cation ionophore A23187 on potassium permeability of rat erythrocytes. J Biol Chem. 1976 Jun 10;251(11):3489–3494. [PubMed] [Google Scholar]
  52. Rose I. A. Regulation of human red cell glycolysis: a review. Exp Eye Res. 1971 May;11(3):264–272. doi: 10.1016/s0014-4835(71)80038-6. [DOI] [PubMed] [Google Scholar]
  53. Rose I. A., Warms J. V. Control of red cell glycolysis. The cause of triose phosphate accumulation. J Biol Chem. 1970 Aug 25;245(16):4009–4015. [PubMed] [Google Scholar]
  54. Schmidt W. F., 3rd, McManus T. J. Ouabain-insensitive salt and water movements in duck red cells. III. The role of chloride in the volume response. J Gen Physiol. 1977 Jul;70(1):99–121. doi: 10.1085/jgp.70.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Schmidt W., Böning D., Braumann K. M. Red cell age effects on metabolism and oxygen affinity in humans. Respir Physiol. 1987 May;68(2):215–225. doi: 10.1016/s0034-5687(87)80007-5. [DOI] [PubMed] [Google Scholar]
  56. Stewart G. W. Co-ordinated variations in chloride-dependent potassium transport and cell water in normal human erythrocytes. J Physiol. 1988 Jul;401:1–16. doi: 10.1113/jphysiol.1988.sp017148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. TOSTESON D. C., HOFFMAN J. F. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J Gen Physiol. 1960 Sep;44:169–194. doi: 10.1085/jgp.44.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Yingst D. R., Hoffman J. F. Changes of intracellular Ca++ as measured by arsenazo III in relation to the K permeability of human erythrocyte ghosts. Biophys J. 1978 Sep;23(3):463–471. doi: 10.1016/S0006-3495(78)85462-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Yingst D. R., Hoffman J. F. Intracellular free Ca and Mg of human red blood cell ghosts measured with entrapped arsenazo III. Anal Biochem. 1983 Jul 15;132(2):431–448. doi: 10.1016/0003-2697(83)90031-3. [DOI] [PubMed] [Google Scholar]
  60. Yu K. T., Pendley C., 2nd, Herczeg T., Pendleton R. G. 2,3-Diphosphoglycerate phosphatase/synthase: a potential target for elevating the diphosphoglycerate level in human red blood cells. J Pharmacol Exp Ther. 1990 Jan;252(1):192–200. [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES