Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1992 Jun 1;99(6):863–895. doi: 10.1085/jgp.99.6.863

Two classes of gating current from L-type Ca channels in guinea pig ventricular myocytes

PMCID: PMC2216624  PMID: 1322450

Abstract

Intramembrane charge movement was recorded in guinea pig ventricular myocytes at 19-22 degrees C using the whole-cell patch clamp technique. From a holding potential of -110 mV, the dependence of intramembrane charge moved on test voltage (Q(V)) followed the sum of two Boltzmann components. One component had a transition voltage (V) of -48 mV and a total charge (Qmax) of congruent to 3 nC/microF. The other had a V of - 18 mV and a Qmax of 11 nC/microF. Ba2+ currents through Ca channels began to activate at -45 mV and peaked at congruent to -15 mV. Na+ current peaked at -35 to -30 mV. Availability of charge (in pulses from -70 to +10 mV) depended on the voltage of conditioning depolarizations as two Boltzmann terms plus a constant. One term had a V of -88 mV and a Qmax of 2.5 nC/microF; the other had a V of -29 mV and a Qmax of 6.3 nC/microF. From the Q(V) dependence, the voltage dependence of the ionic currents, and the voltage dependence of the availability of charge, the low voltage term of Q(V) and availability was identified as Na gating charge, at a total of 3.5 nC/microF. The remainder, 11 nC/microF, was attributed to Ca channels. After pulses to -40 mV and above, the OFF charge movement had a slow exponentially decaying component. Its time constant had a bell-shaped dependence on OFF voltage peaking at 11 ms near -100 mV. Conditioning depolarizations above -40 mV increased the slow component exponentially with the conditioning duration (tau approximately equal to 480 ms). Its magnitude was reduced as the separation between conditioning and test pulses increased (tau approximately equal to 160 ms). The voltage distribution of the slow component of charge was measured after long (5 s) depolarizations. Its V was -100 mV, a shift of -80 mV from the value in normally polarized cells. This voltage was the same at which the time constant of the slow component peaked. Qmax and the steepness of the voltage distribution were unchanged by depolarization. This indicates that the same molecules that produce the charge movement in normally polarized cells also produce the slow component in depolarized cells. 100 microns D600 increased by 77% the slow charge movement after a 500-ms conditioning pulse. These results demonstrate two classes of charge movement associated with L-type Ca channels, with kinetics and voltage dependence similar to charge 1 and charge 2 of skeletal muscle.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. J., Gage P. W. Sodium and calcium gating currents in an Aplysia neurone. J Physiol. 1979 Jun;291:467–481. doi: 10.1113/jphysiol.1979.sp012826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adrian R. H., Almers W. Charge movement in the membrane of striated muscle. J Physiol. 1976 Jan;254(2):339–360. doi: 10.1113/jphysiol.1976.sp011235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armstrong C. M., Bezanilla F. Currents related to movement of the gating particles of the sodium channels. Nature. 1973 Apr 13;242(5398):459–461. doi: 10.1038/242459a0. [DOI] [PubMed] [Google Scholar]
  4. Armstrong C. M. Sodium channels and gating currents. Physiol Rev. 1981 Jul;61(3):644–683. doi: 10.1152/physrev.1981.61.3.644. [DOI] [PubMed] [Google Scholar]
  5. Bayer R., Kalusche D., Kaufmann R., Mannhold R. Inotropic and electrophysiological actions of verapamil and D 600 in mammalian myocardium. III. Effects of the optical isomers on transmembrane action potentials. Naunyn Schmiedebergs Arch Pharmacol. 1975;290(1):81–97. doi: 10.1007/BF00499991. [DOI] [PubMed] [Google Scholar]
  6. Bean B. P., Rios E. Nonlinear charge movement in mammalian cardiac ventricular cells. Components from Na and Ca channel gating. J Gen Physiol. 1989 Jul;94(1):65–93. doi: 10.1085/jgp.94.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Benndorf K., Nilius B. Inactivation of sodium channels in isolated myocardial mouse cells. Eur Biophys J. 1987;15(2):117–127. doi: 10.1007/BF00257505. [DOI] [PubMed] [Google Scholar]
  8. Bezanilla F., Perozo E., Papazian D. M., Stefani E. Molecular basis of gating charge immobilization in Shaker potassium channels. Science. 1991 Nov 1;254(5032):679–683. doi: 10.1126/science.1948047. [DOI] [PubMed] [Google Scholar]
  9. Bezanilla F., Taylor R. E., Fernández J. M. Distribution and kinetics of membrane dielectric polarization. 1. Long-term inactivation of gating currents. J Gen Physiol. 1982 Jan;79(1):21–40. doi: 10.1085/jgp.79.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brown A. M., Lee K. S., Powell T. Sodium current in single rat heart muscle cells. J Physiol. 1981 Sep;318:479–500. doi: 10.1113/jphysiol.1981.sp013879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brum G., Fitts R., Pizarro G., Ríos E. Voltage sensors of the frog skeletal muscle membrane require calcium to function in excitation-contraction coupling. J Physiol. 1988 Apr;398:475–505. doi: 10.1113/jphysiol.1988.sp017053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Byerly L., Meech R., Moody W., Jr Rapidly activating hydrogen ion currents in perfused neurones of the snail, Lymnaea stagnalis. J Physiol. 1984 Jun;351:199–216. doi: 10.1113/jphysiol.1984.sp015241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Caputo C., Bolaños P. Effects of D-600 on intramembrane charge movement of polarized and depolarized frog muscle fibers. J Gen Physiol. 1989 Jul;94(1):43–64. doi: 10.1085/jgp.94.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Doyle D. D., Kamp T. J., Palfrey H. C., Miller R. J., Page E. Separation of cardiac plasmalemma into cell surface and T-tubular components. Distribution of saxitoxin- and nitrendipine-binding sites. J Biol Chem. 1986 May 15;261(14):6556–6563. [PubMed] [Google Scholar]
  15. Fawcett D. W., McNutt N. S. The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol. 1969 Jul;42(1):1–45. doi: 10.1083/jcb.42.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Feldmeyer D., Melzer W., Pohl B. Effects of gallopamil on calcium release and intramembrane charge movements in frog skeletal muscle fibres. J Physiol. 1990 Feb;421:343–362. doi: 10.1113/jphysiol.1990.sp017948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Field A. C., Hill C., Lamb G. D. Asymmetric charge movement and calcium currents in ventricular myocytes of neonatal rat. J Physiol. 1988 Dec;406:277–297. doi: 10.1113/jphysiol.1988.sp017380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hadley R. W., Hume J. R. An intrinsic potential-dependent inactivation mechanism associated with calcium channels in guinea-pig myocytes. J Physiol. 1987 Aug;389:205–222. doi: 10.1113/jphysiol.1987.sp016654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hadley R. W., Lederer W. J. Intramembrane charge movement in guinea-pig and rat ventricular myocytes. J Physiol. 1989 Aug;415:601–624. doi: 10.1113/jphysiol.1989.sp017738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hadley R. W., Lederer W. J. Properties of L-type calcium channel gating current in isolated guinea pig ventricular myocytes. J Gen Physiol. 1991 Aug;98(2):265–285. doi: 10.1085/jgp.98.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  22. Hanck D. A., Sheets M. F., Fozzard H. A. Gating currents associated with Na channels in canine cardiac Purkinje cells. J Gen Physiol. 1990 Mar;95(3):439–457. doi: 10.1085/jgp.95.3.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hui C. S., Milton R. L., Eisenberg R. S. Charge movement in skeletal muscle fibers paralyzed by the calcium-entry blocker D600. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2582–2585. doi: 10.1073/pnas.81.8.2582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Isenberg G., Klockner U. Calcium tolerant ventricular myocytes prepared by preincubation in a "KB medium". Pflugers Arch. 1982 Oct;395(1):6–18. doi: 10.1007/BF00584963. [DOI] [PubMed] [Google Scholar]
  25. Josephson I. R., Sanchez-Chapula J., Brown A. M. A comparison of calcium currents in rat and guinea pig single ventricular cells. Circ Res. 1984 Feb;54(2):144–156. doi: 10.1161/01.res.54.2.144. [DOI] [PubMed] [Google Scholar]
  26. Kazazoglou T., Schmid A., Renaud J. F., Lazdunski M. Ontogenic appearance of Ca2+ channels characterized as binding sites for nitrendipine during development of nervous, skeletal and cardiac muscle systems in the rat. FEBS Lett. 1983 Nov 28;164(1):75–79. doi: 10.1016/0014-5793(83)80022-2. [DOI] [PubMed] [Google Scholar]
  27. Keynes R. D., Rojas E. Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon. J Physiol. 1974 Jun;239(2):393–434. doi: 10.1113/jphysiol.1974.sp010575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kostyuk P. G., Krishtal O. A., Pidoplichko V. I. Asymmetrical displacement currents in nerve cell membrane and effect of internal fluoride. Nature. 1977 May 5;267(5606):70–72. doi: 10.1038/267070a0. [DOI] [PubMed] [Google Scholar]
  29. Lee K. S., Marban E., Tsien R. W. Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. J Physiol. 1985 Jul;364:395–411. doi: 10.1113/jphysiol.1985.sp015752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Legato M. J., Langer G. A. The subcellular localization of calcium ion in mammalian myocardium. J Cell Biol. 1969 May;41(2):401–423. doi: 10.1083/jcb.41.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Renaud J. F., Kazazoglou T., Lombet A., Chicheportiche R., Jaimovich E., Romey G., Lazdunski M. The Na+ channel in mammalian cardiac cells. Two kinds of tetrodotoxin receptors in rat heart membranes. J Biol Chem. 1983 Jul 25;258(14):8799–8805. [PubMed] [Google Scholar]
  32. Renaud J. F., Kazazoglou T., Schmid A., Romey G., Lazdunski M. Differentiation of receptor sites for [3H]nitrendipine in chick hearts and physiological relation to the slow Ca2+ channel and to excitation-contraction coupling. Eur J Biochem. 1984 Mar 15;139(3):673–681. doi: 10.1111/j.1432-1033.1984.tb08056.x. [DOI] [PubMed] [Google Scholar]
  33. Rios E., Brum G. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature. 1987 Feb 19;325(6106):717–720. doi: 10.1038/325717a0. [DOI] [PubMed] [Google Scholar]
  34. Ríos E., Pizarro G. Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiol Rev. 1991 Jul;71(3):849–908. doi: 10.1152/physrev.1991.71.3.849. [DOI] [PubMed] [Google Scholar]
  35. Schneider M. F., Chandler W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244–246. doi: 10.1038/242244a0. [DOI] [PubMed] [Google Scholar]
  36. Tanabe T., Beam K. G., Powell J. A., Numa S. Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature. 1988 Nov 10;336(6195):134–139. doi: 10.1038/336134a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES