Abstract
Charge movement was measured in frog cut twitch fibers with the double Vaseline-gap technique. Steady-state inactivation of charge movement was studied by changing the holding potential from -90 mV to a level ranging from -70 to -30 mV. Q beta and Q gamma at each holding potential were separated by fitting the Q-V plot with a sum of two Boltzmann distribution functions. At -70 mV Q beta and Q gamma were inactivated to 54.0% (SEM 2.2) and 82.7% (SEM 3.0) of the amounts at - 90 mV. At holding potentials greater than or equal to -60 mV, more Q gamma was inactivated than Q beta, and at -30 mV Q gamma was completely inactivated but Q beta was not. There was no holding potential at which Q beta was unaffected and Q gamma was completely inactivated. The differences between the residual fractions of Q beta and Q gamma are significant at all holding potentials (P less than 0.001-0.05). The plot of the residual fraction of Q beta or Q gamma versus holding potential can be fitted well by an inverted sigmoidal curve that is a mirror image of the activation curve of the respective charge component. The pair of curves for Q gamma correlates well with those for tension generation or Ca release obtained by other investigators. The time courses of the inactivation of Q beta and Q gamma were studied by obtaining several Q-V plots with conditioning depolarizations lasting 1-20 s and separating each Q-V plot into Q beta and Q gamma components by fitting with a sum of two Boltzmann distribution functions. The inactivation time constant of Q beta was found to be 5- 10 times as large as that of Q gamma. During repetitive stimulation, prominent I gamma humps could be observed in TEST-minus-CONTROL current traces and normal Q gamma components could be separated from the Q-V plots, whether 20 or 50 mM EGTA was present in the internal solution, whether 2 or 10 stimulations were used, and whether the stimuli were separated by 400 ms or 6 s. Repetitive stimulation slowed the kinetics of the I gamma hump and could shift the Q-V curve slightly in the depolarizing direction in some cases, resulting in an apparent suppression of charge at the potentials that fall on the steep part of the Q-V curve.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adrian R. H., Almers W. Charge movement in the membrane of striated muscle. J Physiol. 1976 Jan;254(2):339–360. doi: 10.1113/jphysiol.1976.sp011235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adrian R. H., Chandler W. K., Rakowski R. F. Charge movement and mechanical repriming in skeletal muscle. J Physiol. 1976 Jan;254(2):361–388. doi: 10.1113/jphysiol.1976.sp011236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adrian R. H., Peres A. Charge movement and membrane capacity in frog muscle. J Physiol. 1979 Apr;289:83–97. doi: 10.1113/jphysiol.1979.sp012726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Almers W. Gating currents and charge movements in excitable membranes. Rev Physiol Biochem Pharmacol. 1978;82:96–190. doi: 10.1007/BFb0030498. [DOI] [PubMed] [Google Scholar]
- Brum G., Rios E. Intramembrane charge movement in frog skeletal muscle fibres. Properties of charge 2. J Physiol. 1987 Jun;387:489–517. doi: 10.1113/jphysiol.1987.sp016586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandler W. K., Hui C. S. Membrane capacitance in frog cut twitch fibers mounted in a double vaseline-gap chamber. J Gen Physiol. 1990 Aug;96(2):225–256. doi: 10.1085/jgp.96.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandler W. K., Rakowski R. F., Schneider M. F. A non-linear voltage dependent charge movement in frog skeletal muscle. J Physiol. 1976 Jan;254(2):245–283. doi: 10.1113/jphysiol.1976.sp011232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen W., Hui C. S. Differential blockage of charge movement components in frog cut twitch fibres by nifedipine. J Physiol. 1991 Dec;444:579–603. doi: 10.1113/jphysiol.1991.sp018895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen W., Hui C. S. Existence of Q gamma in frog cut twitch fibers with little Q beta. Biophys J. 1991 Feb;59(2):503–507. doi: 10.1016/S0006-3495(91)82243-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HOROWICZ P. Potassium contractures in single muscle fibres. J Physiol. 1960 Sep;153:386–403. doi: 10.1113/jphysiol.1960.sp006541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horowicz P., Schneider M. F. Membrane charge movement in contracting and non-contracting skeletal muscle fibres. J Physiol. 1981 May;314:565–593. doi: 10.1113/jphysiol.1981.sp013725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang C. L. Pharmacological separation of charge movement components in frog skeletal muscle. J Physiol. 1982 Mar;324:375–387. doi: 10.1113/jphysiol.1982.sp014118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hui C. S., Chandler W. K. Intramembranous charge movement in frog cut twitch fibers mounted in a double vaseline-gap chamber. J Gen Physiol. 1990 Aug;96(2):257–297. doi: 10.1085/jgp.96.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hui C. S., Chandler W. K. Q beta and Q gamma components of intramembranous charge movement in frog cut twitch fibers. J Gen Physiol. 1991 Sep;98(3):429–464. doi: 10.1085/jgp.98.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hui C. S., Chen W. Separation of Q beta and Q gamma charge components in frog cut twitch fibers with tetracaine. Critical comparison with other methods. J Gen Physiol. 1992 Jun;99(6):985–1016. doi: 10.1085/jgp.99.6.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hui C. S. Comparison of charge movement components in intact and cut twitch fibers of the frog. Effects of stretch and temperature. J Gen Physiol. 1991 Aug;98(2):287–314. doi: 10.1085/jgp.98.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hui C. S. D600 binding sites on voltage-sensors for excitation-contraction coupling in frog skeletal muscle are intracellular. J Muscle Res Cell Motil. 1990 Dec;11(6):471–488. doi: 10.1007/BF01745215. [DOI] [PubMed] [Google Scholar]
- Hui C. S. Differential properties of two charge components in frog skeletal muscle. J Physiol. 1983 Apr;337:531–552. doi: 10.1113/jphysiol.1983.sp014640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hui C. S. Factors affecting the appearance of the hump charge movement component in frog cut twitch fibers. J Gen Physiol. 1991 Aug;98(2):315–347. doi: 10.1085/jgp.98.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hui C. S., Milton R. L. Suppression of charge movement in frog skeletal muscle by D600. J Muscle Res Cell Motil. 1987 Jun;8(3):195–208. doi: 10.1007/BF01574588. [DOI] [PubMed] [Google Scholar]
- Hui C. S. Pharmacological studies of charge movement in frog skeletal muscle. J Physiol. 1983 Apr;337:509–529. doi: 10.1113/jphysiol.1983.sp014639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lüttgau H. C., Glitsch H. G. Membrane physiology of nerve and muscle fibres. Fortschr Zool. 1976;24(1):1–132. [PubMed] [Google Scholar]
- Rakowski R. F., Best P. M., James-Kracke M. R. Voltage dependence of membrane charge movement and calcium release in frog skeletal muscle fibres. J Muscle Res Cell Motil. 1985 Aug;6(4):403–433. doi: 10.1007/BF00712580. [DOI] [PubMed] [Google Scholar]
- Rakowski R. F. Immobilization of membrane charge in frog skeletal muscle by prolonged depolarization. J Physiol. 1981 Aug;317:129–148. doi: 10.1113/jphysiol.1981.sp013817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vergara J., Caputo C. Effects of tetracaine on charge movements and calcium signals in frog skeletal muscle fibers. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1477–1481. doi: 10.1073/pnas.80.5.1477. [DOI] [PMC free article] [PubMed] [Google Scholar]