Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1993 Jun 1;101(6):843–866. doi: 10.1085/jgp.101.6.843

Selectivity of lingual nerve fibers to chemical stimuli

PMCID: PMC2216747  PMID: 8331321

Abstract

The cell bodies of the lingual branch of the trigeminal nerve were localized in the trigeminal ganglion using extracellular recordings together with horseradish peroxidase labeling from the tongue. Individual lingual nerve fibers were characterized with regard to their conduction velocities, receptive fields, and response to thermal, mechanical, and chemical stimuli. Fibers were classified as C, A delta, A beta, cold, and warm. The chemical stimuli included NaCl, KCl, NH4Cl, CaCl2, menthol, nicotine, hexanol, and capsaicin. With increasing salt concentration the latency of the response decreased and the activity increased. The responses elicited by salts (to 2.5 M), but not nonpolar stimuli such as menthol, were reversibly inhibited by 3.5 mM of the tight junction blocker, LaCl3. These data suggest that salts diffuse into stratified squamous epithelia through tight junctions in the stratum corneum and stratum granulosum, whereupon they enter the extracellular space. 11 C fibers were identified and 5 were characterized as polymodal nociceptors. All of the C fibers were activated by one or more of the salts NaCl, KCl, or NH4Cl. Three C fibers were activated by nicotine (1 mM), but none were affected by CaCl2 (1 M), menthol (1 mM), or hexanol (50 mM). However, not all C fibers or even the subpopulation of polymodals were activated by the same salts or by nicotine. Thus, it appears that C fibers display differential responsiveness to chemical stimuli. A delta fibers also showed differential sensitivity to chemicals. Of the 35 characterized A delta mechanoreceptors, 8 responded to NaCl, 9 to KCl, 9 to NH4Cl, 0 to CaCl2, menthol, or hexanol, and 2 to nicotine. 8 of 9 of the cold fibers (characterized as A delta's) responded to menthol, none responded to nicotine, 8 of 16 were inhibited by hexanol, 9 of 19 responded to 2.5 M NH4Cl, 5 of 19 responded to 2.5 M KCl, and 1 of 19 responded to 2.5 M NaCl. In summary, lingual nerve fibers exhibit responsiveness to chemicals introduced onto the tongue. The differential responses of these fibers are potentially capable of transmitting information regarding the quality and quantity of chemical stimuli from the tongue to the central nervous system.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. J., Matthews B. Osmotic stimulation of human dentine and the distribution of dental pain thresholds. Arch Oral Biol. 1967 Mar;12(3):417–426. doi: 10.1016/0003-9969(67)90227-0. [DOI] [PubMed] [Google Scholar]
  2. Arvidson B., Arvidsson J. Retrograde axonal transport of mercury in primary sensory neurons innervating the tooth pulp in the rat. Neurosci Lett. 1990 Jul 17;115(1):29–32. doi: 10.1016/0304-3940(90)90512-8. [DOI] [PubMed] [Google Scholar]
  3. Arvidson B. Retrograde axonal transport of horseradish peroxidase from cornea to trigeminal ganglion. Acta Neuropathol. 1977 Apr 29;38(1):49–52. doi: 10.1007/BF00691276. [DOI] [PubMed] [Google Scholar]
  4. Baratz R. S., Farbman A. I. Morphogenesis of rat lingual filiform papillae. Am J Anat. 1975 Jul;143(3):283–230. doi: 10.1002/aja.1001430303. [DOI] [PubMed] [Google Scholar]
  5. Benzing H., Hensel H., Wurster R. Integrated static acitivity of lingual cold receptors. Pflugers Arch. 1969;311(1):50–54. doi: 10.1007/BF00588061. [DOI] [PubMed] [Google Scholar]
  6. Bevan S., Szolcsányi J. Sensory neuron-specific actions of capsaicin: mechanisms and applications. Trends Pharmacol Sci. 1990 Aug;11(8):330–333. doi: 10.1016/0165-6147(90)90237-3. [DOI] [PubMed] [Google Scholar]
  7. Biedenbach M. A., Beuerman R. W., Brown A. C. Graphic-digitizer analysis of axon spectra in ethmoidal and lingual branches of the trigeminal nerve. Cell Tissue Res. 1975;157(3):341–352. doi: 10.1007/BF00225525. [DOI] [PubMed] [Google Scholar]
  8. Cadden S. W., Lisney S. J., Matthews B. Thresholds to electrical stimulation of nerves in cat canine tooth-pulp with A beta-, A delta- and C-fibre conduction velocities. Brain Res. 1983 Feb 14;261(1):31–41. doi: 10.1016/0006-8993(83)91280-5. [DOI] [PubMed] [Google Scholar]
  9. Cometto-Muñiz J. E., Cain W. S. Nasal pungency, odor, and eye irritation thresholds for homologous acetates. Pharmacol Biochem Behav. 1991 Aug;39(4):983–989. doi: 10.1016/0091-3057(91)90063-8. [DOI] [PubMed] [Google Scholar]
  10. DASTUR D. K. The relationship between terminal lingual innervation and gustation. A clinical and histological study. Brain. 1961 Sep;84:499–513. doi: 10.1093/brain/84.3.499. [DOI] [PubMed] [Google Scholar]
  11. Dubner R., Bennett G. J. Spinal and trigeminal mechanisms of nociception. Annu Rev Neurosci. 1983;6:381–418. doi: 10.1146/annurev.ne.06.030183.002121. [DOI] [PubMed] [Google Scholar]
  12. Eccles R., Griffiths D. H., Newton C. G., Tolley N. S. The effects of menthol isomers on nasal sensation of airflow. Clin Otolaryngol Allied Sci. 1988 Feb;13(1):25–29. doi: 10.1111/j.1365-2273.1988.tb00277.x. [DOI] [PubMed] [Google Scholar]
  13. HENSEL H., ZOTTERMAN Y. The response of mechanoreceptors to thermal stimulation. J Physiol. 1951 Sep;115(1):16–24. doi: 10.1113/jphysiol.1951.sp004649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hellekant G. The effect of ethyl alcohol on non-gustatory receptors of the tongue of the cat. Acta Physiol Scand. 1965 Nov;65(3):243–250. doi: 10.1111/j.1748-1716.1965.tb04267.x. [DOI] [PubMed] [Google Scholar]
  15. Hensel H., Schäfer K. Effects of calcium on warm and cold receptors. Pflugers Arch. 1974;352(1):87–90. doi: 10.1007/BF01061953. [DOI] [PubMed] [Google Scholar]
  16. Holland V. F., Zampighi G. A., Simon S. A. Morphology of fungiform papillae in canine lingual epithelium: location of intercellular junctions in the epithelium. J Comp Neurol. 1989 Jan 1;279(1):13–27. doi: 10.1002/cne.902790103. [DOI] [PubMed] [Google Scholar]
  17. Jacquin M. F., Semba K., Egger M. D., Rhoades R. W. Organization of HRP-labeled trigeminal mandibular primary afferent neurons in the rat. J Comp Neurol. 1983 Apr 20;215(4):397–420. doi: 10.1002/cne.902150405. [DOI] [PubMed] [Google Scholar]
  18. Jyväsjärvi E., Kniffki K. D., Mengel M. K. Functional characteristics of afferent C fibres from tooth pulp and periodontal ligament. Prog Brain Res. 1988;74:237–245. doi: 10.1016/s0079-6123(08)63019-8. [DOI] [PubMed] [Google Scholar]
  19. Kaaber S. The permeability and barrier functions of the oral mucosa with respect to water and electrolytes. Studies of the transport of water, sodium and potassium through the human mucosal surface in vivo. Acta Odontol Scand Suppl. 1974;32(66):3–47. [PubMed] [Google Scholar]
  20. Kinnamon J. C., Sherman T. A., Roper S. D. Ultrastructure of mouse vallate taste buds: III. Patterns of synaptic connectivity. J Comp Neurol. 1988 Apr 1;270(1):1-10, 56-7. doi: 10.1002/cne.902700102. [DOI] [PubMed] [Google Scholar]
  21. Kinnman E., Aldskogius H. Collateral reinnervation of taste buds after chronic sensory denervation: a morphological study. J Comp Neurol. 1988 Apr 22;270(4):569–574. doi: 10.1002/cne.902700410. [DOI] [PubMed] [Google Scholar]
  22. Kosar E., Schwartz G. J. Effects of menthol on peripheral nerve and cortical unit responses to thermal stimulation of the oral cavity in the rat. Brain Res. 1990 Apr 16;513(2):202–211. doi: 10.1016/0006-8993(90)90458-n. [DOI] [PubMed] [Google Scholar]
  23. Lieberman E. M., Hassan S. Studies of axon-glial cell interactions and periaxonal K+ homeostasis--III. The effect of anisosmotic media and potassium on the relationship between the resistance in series with the axon membrane and glial cell volume. Neuroscience. 1988 Jun;25(3):971–981. doi: 10.1016/0306-4522(88)90050-4. [DOI] [PubMed] [Google Scholar]
  24. Lucier G. E., Egizii R. Characterization of cat nasal afferents and brain stem neurones receiving ethmoidal input. Exp Neurol. 1989 Jan;103(1):83–89. doi: 10.1016/0014-4886(89)90189-1. [DOI] [PubMed] [Google Scholar]
  25. Marfurt C. F., Del Toro D. R. Corneal sensory pathway in the rat: a horseradish peroxidase tracing study. J Comp Neurol. 1987 Jul 15;261(3):450–459. doi: 10.1002/cne.902610309. [DOI] [PubMed] [Google Scholar]
  26. Markowitz K., Bilotto G., Kim S. Decreasing intradental nerve activity in the cat with potassium and divalent cations. Arch Oral Biol. 1991;36(1):1–7. doi: 10.1016/0003-9969(91)90047-x. [DOI] [PubMed] [Google Scholar]
  27. Mazza J. P., Dixon A. D. A histological study of chromatolytic cell groups in the trigeminal ganglion of the rat. Arch Oral Biol. 1972 Mar;17(3):377–387. doi: 10.1016/0003-9969(72)90053-2. [DOI] [PubMed] [Google Scholar]
  28. Mistretta C. M. Permeability of tongue epithelium and its relation to taste. Am J Physiol. 1971 May;220(5):1162–1167. doi: 10.1152/ajplegacy.1971.220.5.1162. [DOI] [PubMed] [Google Scholar]
  29. Okuni Y. [Response of lingual nerve fibers of the rat to pungent spices and irritants in pungent spices (author's transl)]. Shikwa Gakuho. 1978 Feb;78(2):325–339. [PubMed] [Google Scholar]
  30. PAINTAL A. S. EFFECTS OF DRUGS ON VERTEBRATE MECHANORECEPTORS. Pharmacol Rev. 1964 Dec;16:341–380. [PubMed] [Google Scholar]
  31. Pidoplichko V. I. Ammonia and proton gated channel populations in trigeminal ganglion neurons. Gen Physiol Biophys. 1992 Feb;11(1):39–48. [PubMed] [Google Scholar]
  32. Roper S. D. The cell biology of vertebrate taste receptors. Annu Rev Neurosci. 1989;12:329–353. doi: 10.1146/annurev.ne.12.030189.001553. [DOI] [PubMed] [Google Scholar]
  33. Schneeberger E. E., Lynch R. D. Structure, function, and regulation of cellular tight junctions. Am J Physiol. 1992 Jun;262(6 Pt 1):L647–L661. doi: 10.1152/ajplung.1992.262.6.L647. [DOI] [PubMed] [Google Scholar]
  34. Schäffer K., Braun H. A. Modulation of cutaneous cold receptor function by electrolytes, hormones and thermal adaptation. Physiol Res. 1992;41(1):71–75. [PubMed] [Google Scholar]
  35. Scriven D. R. Modeling repetitive firing and bursting in a small unmyelinated nerve fiber. Biophys J. 1981 Sep;35(3):715–730. doi: 10.1016/S0006-3495(81)84823-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmacol Rev. 1972 Dec;24(4):583–655. [PubMed] [Google Scholar]
  37. Silver W. L., Farley L. G., Finger T. E. The effects of neonatal capsaicin administration on trigeminal nerve chemoreceptors in the rat nasal cavity. Brain Res. 1991 Oct 11;561(2):212–216. doi: 10.1016/0006-8993(91)91597-t. [DOI] [PubMed] [Google Scholar]
  38. Silver W. L., Mason J. R., Adams M. A., Smeraski C. A. Nasal trigeminal chemoreception: responses to n-aliphatic alcohols. Brain Res. 1986 Jun 25;376(2):221–229. doi: 10.1016/0006-8993(86)90183-6. [DOI] [PubMed] [Google Scholar]
  39. Simon S. A., Sostman A. L. Electrophysiological responses to non-electrolytes in lingual nerve of rat and in lingual epithelia of dog. Arch Oral Biol. 1991;36(11):805–813. doi: 10.1016/0003-9969(91)90030-x. [DOI] [PubMed] [Google Scholar]
  40. Sostman A. L., Simon S. A. Trigeminal nerve responses in the rat elicited by chemical stimulation of the tongue. Arch Oral Biol. 1991;36(2):95–102. doi: 10.1016/0003-9969(91)90071-2. [DOI] [PubMed] [Google Scholar]
  41. Squier C. A., Johnson N. W. Permeability of oral mucosa. Br Med Bull. 1975 May;31(2):169–175. doi: 10.1093/oxfordjournals.bmb.a071275. [DOI] [PubMed] [Google Scholar]
  42. Wada E., Wada K., Boulter J., Deneris E., Heinemann S., Patrick J., Swanson L. W. Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol. 1989 Jun 8;284(2):314–335. doi: 10.1002/cne.902840212. [DOI] [PubMed] [Google Scholar]
  43. Williams M. L., Elias P. M. The extracellular matrix of stratum corneum: role of lipids in normal and pathological function. Crit Rev Ther Drug Carrier Syst. 1987;3(2):95–122. [PubMed] [Google Scholar]
  44. Yamasaki H., Kubota Y., Tohyama M. Ontogeny of substance P-containing fibers in the taste buds and the surrounding epithelium. I. Light microscopic analysis. Brain Res. 1985 Feb;350(1-2):301–305. doi: 10.1016/0165-3806(85)90274-3. [DOI] [PubMed] [Google Scholar]
  45. Zucker E., Welker W. I. Coding of somatic sensory input by vibrissae neurons in the rat's trigeminal ganglion. Brain Res. 1969 Jan;12(1):138–156. doi: 10.1016/0006-8993(69)90061-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES