Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1993 Jun 1;101(6):801–826. doi: 10.1085/jgp.101.6.801

Chloride channels activated by osmotic stress in T lymphocytes

PMCID: PMC2216748  PMID: 7687269

Abstract

We have used whole-cell and perforated-patch recording techniques to characterize volume-sensitive Cl- channels in T and B lymphocytes. Positive transmembrane osmotic pressure (intracellular osmolality > extracellular osmolality) triggers the slow induction of a Cl- conductance. Membrane stretch caused by cellular swelling may underlie the activation mechanism, as moderate suction applied to the pipette interior can reversibly oppose the induction of Cl- current by an osmotic stimulus. Intracellular ATP is required for sustaining the Cl- current. With ATP-free internal solutions, the inducibility of Cl- current declines within minutes of whole-cell recording, while in whole- cell recordings with ATP or in perforated-patch experiments, the current can be activated for at least 30 min. The channels are anion selective with a permeability sequence of I- > SCN- > NO3-, Br- > Cl- > MeSO3- > acetate, propionate > ascorbate > aspartate and gluconate. GCl does not show voltage- and time-dependent gating behavior at potentials between -100 and +100 mV, but exhibits moderate outward rectification in symmetrical Cl- solutions. Fluctuation analysis indicates a unitary chord conductance of approximately 2 pS at -80 mV in the presence of symmetrical 160 mM Cl-. The relationship of mean current to current variance during the osmotic activation of Cl- current implies that each cell contains on the order of 10(4) activatable Cl- channels, making it the most abundant ion channel in lymphocytes yet described. The current is blocked in a voltage-dependent manner by DIDS and SITS (Ki = 17 and 89 microM, respectively, at +40 mV), the degree of blockade increasing with membrane depolarization. The biophysical and pharmacological properties of this Cl- channel are consistent with a role in triggering volume regulation in lymphocytes exposed to hyposmotic conditions.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cahalan M. D., Lewis R. S. Role of potassium and chloride channels in volume regulation by T lymphocytes. Soc Gen Physiol Ser. 1988;43:281–301. [PubMed] [Google Scholar]
  2. Chan H. C., Goldstein J., Nelson D. J. Alternate pathways for chloride conductance activation in normal and cystic fibrosis airway epithelial cells. Am J Physiol. 1992 May;262(5 Pt 1):C1273–C1283. doi: 10.1152/ajpcell.1992.262.5.C1273. [DOI] [PubMed] [Google Scholar]
  3. Chen J. H., Schulman H., Gardner P. A cAMP-regulated chloride channel in lymphocytes that is affected in cystic fibrosis. Science. 1989 Feb 3;243(4891):657–660. doi: 10.1126/science.2464852. [DOI] [PubMed] [Google Scholar]
  4. Decoursey T. E., Chandy K. G., Gupta S., Cahalan M. D. Mitogen induction of ion channels in murine T lymphocytes. J Gen Physiol. 1987 Mar;89(3):405–420. doi: 10.1085/jgp.89.3.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deutsch C., Krause D., Lee S. C. Voltage-gated potassium conductance in human T lymphocytes stimulated with phorbol ester. J Physiol. 1986 Mar;372:405–423. doi: 10.1113/jphysiol.1986.sp016016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deutsch C., Lee S. C. Cell volume regulation in lymphocytes. Ren Physiol Biochem. 1988 May-Oct;11(3-5):260–276. doi: 10.1159/000173166. [DOI] [PubMed] [Google Scholar]
  7. Doroshenko P., Neher E. Volume-sensitive chloride conductance in bovine chromaffin cell membrane. J Physiol. 1992 Apr;449:197–218. doi: 10.1113/jphysiol.1992.sp019082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Doroshenko P., Penner R., Neher E. Novel chloride conductance in the membrane of bovine chromaffin cells activated by intracellular GTP gamma S. J Physiol. 1991 May;436:711–724. doi: 10.1113/jphysiol.1991.sp018575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doroshenko P. Second messengers mediating activation of chloride current by intracellular GTP gamma S in bovine chromaffin cells. J Physiol. 1991 May;436:725–738. doi: 10.1113/jphysiol.1991.sp018576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Duszyk M., French A. S., Man S. F. Noise analysis and single-channel observations of 4 pS chloride channels in human airway epithelia. Biophys J. 1992 Feb;61(2):583–587. doi: 10.1016/S0006-3495(92)81861-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frizzell R. A., Rechkemmer G., Shoemaker R. L. Altered regulation of airway epithelial cell chloride channels in cystic fibrosis. Science. 1986 Aug 1;233(4763):558–560. doi: 10.1126/science.2425436. [DOI] [PubMed] [Google Scholar]
  12. Grinstein S., Clarke C. A., Dupre A., Rothstein A. Volume-induced increase of anion permeability in human lymphocytes. J Gen Physiol. 1982 Dec;80(6):801–823. doi: 10.1085/jgp.80.6.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grinstein S., Dixon S. J. Ion transport, membrane potential, and cytoplasmic pH in lymphocytes: changes during activation. Physiol Rev. 1989 Apr;69(2):417–481. doi: 10.1152/physrev.1989.69.2.417. [DOI] [PubMed] [Google Scholar]
  14. Grinstein S., Smith J. D. Calcium-independent cell volume regulation in human lymphocytes. Inhibition by charybdotoxin. J Gen Physiol. 1990 Jan;95(1):97–120. doi: 10.1085/jgp.95.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grissmer S., Lewis R. S., Cahalan M. D. Ca(2+)-activated K+ channels in human leukemic T cells. J Gen Physiol. 1992 Jan;99(1):63–84. doi: 10.1085/jgp.99.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Guharay F., Sachs F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol. 1984 Jul;352:685–701. doi: 10.1113/jphysiol.1984.sp015317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  18. Hoffmann E. K., Simonsen L. O. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev. 1989 Apr;69(2):315–382. doi: 10.1152/physrev.1989.69.2.315. [DOI] [PubMed] [Google Scholar]
  19. Horn R., Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol. 1988 Aug;92(2):145–159. doi: 10.1085/jgp.92.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee S. C., Price M., Prystowsky M. B., Deutsch C. Volume response of quiescent and interleukin 2-stimulated T-lymphocytes to hypotonicity. Am J Physiol. 1988 Feb;254(2 Pt 1):C286–C296. doi: 10.1152/ajpcell.1988.254.2.C286. [DOI] [PubMed] [Google Scholar]
  21. Lewis R. S., Cahalan M. D. Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Regul. 1989 Nov;1(1):99–112. doi: 10.1091/mbc.1.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lewis R. S., Cahalan M. D. Subset-specific expression of potassium channels in developing murine T lymphocytes. Science. 1988 Feb 12;239(4841 Pt 1):771–775. doi: 10.1126/science.2448877. [DOI] [PubMed] [Google Scholar]
  23. Maldonado D., Schumann M., Nghiem P., Dong Y., Gardner P. Prostaglandin E1 activates a chloride current in Jurkat T lymphocytes via cAMP-dependent protein kinase. FASEB J. 1991 Nov;5(14):2965–2970. doi: 10.1096/fasebj.5.14.1721593. [DOI] [PubMed] [Google Scholar]
  24. Matthews G., Neher E., Penner R. Chloride conductance activated by external agonists and internal messengers in rat peritoneal mast cells. J Physiol. 1989 Nov;418:131–144. doi: 10.1113/jphysiol.1989.sp017831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McCann J. D., Li M., Welsh M. J. Identification and regulation of whole-cell chloride currents in airway epithelium. J Gen Physiol. 1989 Dec;94(6):1015–1036. doi: 10.1085/jgp.94.6.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McDonald T. V., Nghiem P. T., Gardner P., Martens C. L. Human lymphocytes transcribe the cystic fibrosis transmembrane conductance regulator gene and exhibit CF-defective cAMP-regulated chloride current. J Biol Chem. 1992 Feb 15;267(5):3242–3248. [PubMed] [Google Scholar]
  27. Nishimoto I., Wagner J. A., Schulman H., Gardner P. Regulation of Cl- channels by multifunctional CaM kinase. Neuron. 1991 Apr;6(4):547–555. doi: 10.1016/0896-6273(91)90057-7. [DOI] [PubMed] [Google Scholar]
  28. Pahapill P. A., Schlichter L. C. Cl- channels in intact human T lymphocytes. J Membr Biol. 1992 Jan;125(2):171–183. doi: 10.1007/BF00233356. [DOI] [PubMed] [Google Scholar]
  29. Penner R., Matthews G., Neher E. Regulation of calcium influx by second messengers in rat mast cells. Nature. 1988 Aug 11;334(6182):499–504. doi: 10.1038/334499a0. [DOI] [PubMed] [Google Scholar]
  30. Rink R. J., Sanchez A., Grinstein S., Rothstein A. Volume restoration in osmotically swollen lymphocytes does not involve changes in free Ca2+ concentration. Biochim Biophys Acta. 1983 Jul 14;762(4):593–596. doi: 10.1016/0167-4889(83)90064-2. [DOI] [PubMed] [Google Scholar]
  31. Sands S. B., Lewis R. S., Cahalan M. D. Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes. J Gen Physiol. 1989 Jun;93(6):1061–1074. doi: 10.1085/jgp.93.6.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sarkadi B., Mack E., Rothstein A. Ionic events during the volume response of human peripheral blood lymphocytes to hypotonic media. II. Volume- and time-dependent activation and inactivation of ion transport pathways. J Gen Physiol. 1984 Apr;83(4):513–527. doi: 10.1085/jgp.83.4.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sigworth F. J. The variance of sodium current fluctuations at the node of Ranvier. J Physiol. 1980 Oct;307:97–129. doi: 10.1113/jphysiol.1980.sp013426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Solc C. K., Wine J. J. Swelling-induced and depolarization-induced C1-channels in normal and cystic fibrosis epithelial cells. Am J Physiol. 1991 Oct;261(4 Pt 1):C658–C674. doi: 10.1152/ajpcell.1991.261.4.C658. [DOI] [PubMed] [Google Scholar]
  35. Tseng G. N. Cell swelling increases membrane conductance of canine cardiac cells: evidence for a volume-sensitive Cl channel. Am J Physiol. 1992 Apr;262(4 Pt 1):C1056–C1068. doi: 10.1152/ajpcell.1992.262.4.C1056. [DOI] [PubMed] [Google Scholar]
  36. Valverde M. A., Díaz M., Sepúlveda F. V., Gill D. R., Hyde S. C., Higgins C. F. Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein. Nature. 1992 Feb 27;355(6363):830–833. doi: 10.1038/355830a0. [DOI] [PubMed] [Google Scholar]
  37. Welsh M. J., Liedtke C. M. Chloride and potassium channels in cystic fibrosis airway epithelia. 1986 Jul 31-Aug 6Nature. 322(6078):467–470. doi: 10.1038/322467a0. [DOI] [PubMed] [Google Scholar]
  38. Worrell R. T., Butt A. G., Cliff W. H., Frizzell R. A. A volume-sensitive chloride conductance in human colonic cell line T84. Am J Physiol. 1989 Jun;256(6 Pt 1):C1111–C1119. doi: 10.1152/ajpcell.1989.256.6.C1111. [DOI] [PubMed] [Google Scholar]
  39. Yamamoto D., Suzuki N. Blockage of chloride channels by HEPES buffer. Proc R Soc Lond B Biol Sci. 1987 Feb 23;230(1258):93–100. doi: 10.1098/rspb.1987.0011. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES