Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1993 Jun 1;101(6):827–841. doi: 10.1085/jgp.101.6.827

Expression of multiple water channel activities in Xenopus oocytes injected with mRNA from rat kidney

PMCID: PMC2216749  PMID: 7687270

Abstract

To test the hypothesis that renal tissue contains multiple distinct water channels, mRNA prepared from either cortex, medulla, or papilla of rat kidney was injected into Xenopus oocytes. The osmotic water permeability (Pf) of oocytes injected with either 50 nl of water or 50 nl of renal mRNA (1 microgram/microliter) was measured 4 d after the injection. Pf was calculated from the rate of volume increase on exposure to hyposmotic medium. Injection of each renal mRNA preparation increased the oocyte Pf. This expressed water permeability was inhibited by p-chloromercuriphenylsulfonate and had a low energy of activation, consistent with the expression of water channels. The coinjection of an antisense oligonucleotide for CHIP28 protein, at an assumed > 100-fold molar excess, with either cortex, medulla, or papilla mRNA reduced the expression of the water permeability by approximately 70, 100, and 30%, respectively. Exposure of the oocyte to cAMP for 1 h resulted in a further increase in Pf only in oocytes injected with medulla mRNA. This cAMP activation was not altered by the CHIP28 antisense oligonucleotide. These results suggest that multiple distinct water channels were expressed in oocytes injected with mRNA obtained from sections of rat kidney: (a) CHIP28 water channels in cortex and medulla, (b) cAMP-activated water channels in medulla, and (c) cAMP-insensitive water channels in papilla.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badley J. E., Bishop G. A., St John T., Frelinger J. A. A simple, rapid method for the purification of poly A+ RNA. Biotechniques. 1988 Feb;6(2):114–116. [PubMed] [Google Scholar]
  2. Berry C. A. Water permeability and pathways in the proximal tubule. Am J Physiol. 1983 Sep;245(3):F279–F294. doi: 10.1152/ajprenal.1983.245.3.F279. [DOI] [PubMed] [Google Scholar]
  3. Calamita G., Valenti G., Svelto M., Bourguet J. Selected polyclonal antibodies and ADH challenge in frog urinary bladder: a label-fracture study. Am J Physiol. 1992 Feb;262(2 Pt 2):F267–F274. doi: 10.1152/ajprenal.1992.262.2.F267. [DOI] [PubMed] [Google Scholar]
  4. Carpi-Medina P., León V., Espidel J., Whittembury G. Diffusive water permeability in isolated kidney proximal tubular cells: nature of the cellular water pathways. J Membr Biol. 1988 Aug;104(1):35–43. doi: 10.1007/BF01871900. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Denker B. M., Smith B. L., Kuhajda F. P., Agre P. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem. 1988 Oct 25;263(30):15634–15642. [PubMed] [Google Scholar]
  7. Fischbarg J., Kuang K. Y., Vera J. C., Arant S., Silverstein S. C., Loike J., Rosen O. M. Glucose transporters serve as water channels. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3244–3247. doi: 10.1073/pnas.87.8.3244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harris H. W., Jr, Strange K., Zeidel M. L. Current understanding of the cellular biology and molecular structure of the antidiuretic hormone-stimulated water transport pathway. J Clin Invest. 1991 Jul;88(1):1–8. doi: 10.1172/JCI115263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hoch B. S., Gorfien P. C., Linzer D., Fusco M. J., Levine S. D. Mercurial reagents inhibit flow through ADH-induced water channels in toad bladder. Am J Physiol. 1989 May;256(5 Pt 2):F948–F953. doi: 10.1152/ajprenal.1989.256.5.F948. [DOI] [PubMed] [Google Scholar]
  10. Kachadorian W. A., Muller J., Rudich S. W., DiScala V. A. Temperature dependence of ADH-induced water flow and intramembranous particle aggregates in toad bladder. Science. 1979 Aug 31;205(4409):910–913. doi: 10.1126/science.112678. [DOI] [PubMed] [Google Scholar]
  11. Lankford S. P., Chou C. L., Terada Y., Wall S. M., Wade J. B., Knepper M. A. Regulation of collecting duct water permeability independent of cAMP-mediated AVP response. Am J Physiol. 1991 Sep;261(3 Pt 2):F554–F566. doi: 10.1152/ajprenal.1991.261.3.F554. [DOI] [PubMed] [Google Scholar]
  12. Macey R. I., Farmer R. E. Inhibition of water and solute permeability in human red cells. Biochim Biophys Acta. 1970 Jul 7;211(1):104–106. doi: 10.1016/0005-2736(70)90130-6. [DOI] [PubMed] [Google Scholar]
  13. Milovanovic S., Frindt G., Tate S. S., Windhager E. E. Expression of renal Na(+)-Ca2+ exchange activity in Xenopus laevis oocytes. Am J Physiol. 1991 Aug;261(2 Pt 2):F207–F212. doi: 10.1152/ajprenal.1991.261.2.F207. [DOI] [PubMed] [Google Scholar]
  14. Nielsen S., Smith B. L., Christensen E. I., Knepper M. A., Agre P. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J Cell Biol. 1993 Jan;120(2):371–383. doi: 10.1083/jcb.120.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Preston G. M., Agre P. Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11110–11114. doi: 10.1073/pnas.88.24.11110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Preston G. M., Carroll T. P., Guggino W. B., Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science. 1992 Apr 17;256(5055):385–387. doi: 10.1126/science.256.5055.385. [DOI] [PubMed] [Google Scholar]
  17. Smith B. L., Agre P. Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J Biol Chem. 1991 Apr 5;266(10):6407–6415. [PubMed] [Google Scholar]
  18. Valenti G., Calamita G., Svelto M. Polyclonal antibodies in study of ADH-induced water channels in frog urinary bladder. Am J Physiol. 1991 Sep;261(3 Pt 2):F437–F442. doi: 10.1152/ajprenal.1991.261.3.F437. [DOI] [PubMed] [Google Scholar]
  19. Verkman A. S., Lencer W. I., Brown D., Ausiello D. A. Endosomes from kidney collecting tubule cells contain the vasopressin-sensitive water channel. Nature. 1988 May 19;333(6170):268–269. doi: 10.1038/333268a0. [DOI] [PubMed] [Google Scholar]
  20. Verkman A. S. Mechanisms and regulation of water permeability in renal epithelia. Am J Physiol. 1989 Nov;257(5 Pt 1):C837–C850. doi: 10.1152/ajpcell.1989.257.5.C837. [DOI] [PubMed] [Google Scholar]
  21. Whittembury G., Carpi-Medina P., González E., Linares H. Effect of para-chloromercuribenzenesulfonic acid and temperature on cell water osmotic permeability of proximal straight tubules. Biochim Biophys Acta. 1984 Sep 5;775(3):365–373. doi: 10.1016/0005-2736(84)90192-5. [DOI] [PubMed] [Google Scholar]
  22. Zeidel M. L., Ambudkar S. V., Smith B. L., Agre P. Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry. 1992 Aug 25;31(33):7436–7440. doi: 10.1021/bi00148a002. [DOI] [PubMed] [Google Scholar]
  23. Zhang R. B., Logee K. A., Verkman A. S. Expression of mRNA coding for kidney and red cell water channels in Xenopus oocytes. J Biol Chem. 1990 Sep 15;265(26):15375–15378. [PubMed] [Google Scholar]
  24. van Heeswijk M. P., van Os C. H. Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine. J Membr Biol. 1986;92(2):183–193. doi: 10.1007/BF01870707. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES