Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1993 Feb 1;101(2):235–270. doi: 10.1085/jgp.101.2.235

Interplay between passive tension and strong and weak binding cross- bridges in insect indirect flight muscle. A functional dissection by gelsolin-mediated thin filament removal

PMCID: PMC2216761  PMID: 7681097

Abstract

The interplay between passive and active mechanical properties of indirect flight muscle of the waterbug (Lethocerus) was investigated. A functional dissection of the relative contribution of cross-bridges, actin filaments, and C filaments to tension and stiffness of passive, activated, and rigor fibers was carried out by comparing mechanical properties at different ionic strengths of sarcomeres with and without thin filaments. Selective thin filament removal was accomplished by treatment with the actin-severving protein gelsolin. Thin filament, removal had no effect on passive tension, indicating that the C filament and the actin filament are mechanically independent and that passive tension is developed by the C filament in response to sarcomere stretch. Passive tension increased steeply with sarcomere length until an elastic limit was reached at only 6-7% sarcomere extension, which corresponds to an extension of 350% of the C filament. The passive tension-length relation of insect flight muscle was analyzed using a segmental extension model of passive tension development (Wang, K, R. McCarter, J. Wright, B. Jennate, and R Ramirez-Mitchell. 1991. Proc. Natl. Acad. Sci. USA. 88:7101-7109). Thin filament removal greatly depressed high frequency passive stiffness (2.2 kHz) and eliminated the ionic strength sensitivity of passive stiffness. It is likely that the passive stiffness component that is removed by gelsolin is derived from weak-binding cross-bridges, while the component that remains is derived from the C filament. Our results indicate that a significant number of weak-binding cross-bridges exist in passive insect muscle at room temperature and at an ionic strength of 195 mM. Analysis of rigor muscle indicated that while rigor tension is entirely actin based, rigor stiffness contains a component that resists gelsolin treatment and is therefore likely to be C filament based. Active tension and active stiffness of unextracted fibers were directly proportional to passive tension before activation. Similarly, passive stiffness due to weak bridges also increased linearly with passive tension, up to a limit. These correlations lead us to propose a stress-activation model for insect flight muscle in which passive tension is a prerequisite for the formation of both weak-binding and strong-binding cross-bridges.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott R. H., Cage P. E. A possible mechanism of length activation in insect fibrillar flight muscle. J Muscle Res Cell Motil. 1984 Aug;5(4):387–397. doi: 10.1007/BF00818257. [DOI] [PubMed] [Google Scholar]
  2. Ayme-Southgate A., Vigoreaux J., Benian G., Pardue M. L. Drosophila has a twitchin/titin-related gene that appears to encode projectin. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7973–7977. doi: 10.1073/pnas.88.18.7973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benian G. M., Kiff J. E., Neckelmann N., Moerman D. G., Waterston R. H. Sequence of an unusually large protein implicated in regulation of myosin activity in C. elegans. Nature. 1989 Nov 2;342(6245):45–50. doi: 10.1038/342045a0. [DOI] [PubMed] [Google Scholar]
  4. Brenner B., Chalovich J. M., Greene L. E., Eisenberg E., Schoenberg M. Stiffness of skinned rabbit psoas fibers in MgATP and MgPPi solution. Biophys J. 1986 Oct;50(4):685–691. doi: 10.1016/S0006-3495(86)83509-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brenner B., Schoenberg M., Chalovich J. M., Greene L. E., Eisenberg E. Evidence for cross-bridge attachment in relaxed muscle at low ionic strength. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7288–7291. doi: 10.1073/pnas.79.23.7288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bryan J. Gelsolin has three actin-binding sites. J Cell Biol. 1988 May;106(5):1553–1562. doi: 10.1083/jcb.106.5.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bullard B., Leonard K., Larkins A., Butcher G., Karlik C., Fyrberg E. Troponin of asynchronous flight muscle. J Mol Biol. 1988 Dec 5;204(3):621–637. doi: 10.1016/0022-2836(88)90360-9. [DOI] [PubMed] [Google Scholar]
  8. Chalovich J. M., Yu L. C., Brenner B. Involvement of weak binding crossbridges in force production in muscle. J Muscle Res Cell Motil. 1991 Dec;12(6):503–506. doi: 10.1007/BF01738438. [DOI] [PubMed] [Google Scholar]
  9. Fabiato A. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 1988;157:378–417. doi: 10.1016/0076-6879(88)57093-3. [DOI] [PubMed] [Google Scholar]
  10. Funatsu T., Higuchi H., Ishiwata S. Elastic filaments in skeletal muscle revealed by selective removal of thin filaments with plasma gelsolin. J Cell Biol. 1990 Jan;110(1):53–62. doi: 10.1083/jcb.110.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goody R. S., Reedy M. C., Hofmann W., Holmes K. C., Reedy M. K. Binding of myosin subfragment 1 to glycerinated insect flight muscle in the rigor state. Biophys J. 1985 Feb;47(2 Pt 1):151–169. doi: 10.1016/s0006-3495(85)83889-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Granzier H. L., Myers J. A., Pollack G. H. Stepwise shortening of muscle fibre segments. J Muscle Res Cell Motil. 1987 Jun;8(3):242–251. doi: 10.1007/BF01574592. [DOI] [PubMed] [Google Scholar]
  13. Higuchi H., Suzuki T., Kimura S., Yoshioka T., Maruyama K., Umazume Y. Localization and elasticity of connectin (titin) filaments in skinned frog muscle fibres subjected to partial depolymerization of thick filaments. J Muscle Res Cell Motil. 1992 Jun;13(3):285–294. doi: 10.1007/BF01766456. [DOI] [PubMed] [Google Scholar]
  14. Horowits R., Podolsky R. J. The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments. J Cell Biol. 1987 Nov;105(5):2217–2223. doi: 10.1083/jcb.105.5.2217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hu D. H., Matsuno A., Terakado K., Matsuura T., Kimura S., Maruyama K. Projectin is an invertebrate connectin (titin): isolation from crayfish claw muscle and localization in crayfish claw muscle and insect flight muscle. J Muscle Res Cell Motil. 1990 Dec;11(6):497–511. doi: 10.1007/BF01745217. [DOI] [PubMed] [Google Scholar]
  16. Kawai M., Brandt P. W. Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog and crayfish. J Muscle Res Cell Motil. 1980 Sep;1(3):279–303. doi: 10.1007/BF00711932. [DOI] [PubMed] [Google Scholar]
  17. Kruger M., Wright J., Wang K. Nebulin as a length regulator of thin filaments of vertebrate skeletal muscles: correlation of thin filament length, nebulin size, and epitope profile. J Cell Biol. 1991 Oct;115(1):97–107. doi: 10.1083/jcb.115.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lakey A., Ferguson C., Labeit S., Reedy M., Larkins A., Butcher G., Leonard K., Bullard B. Identification and localization of high molecular weight proteins in insect flight and leg muscle. EMBO J. 1990 Nov;9(11):3459–3467. doi: 10.1002/j.1460-2075.1990.tb07554.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Maruyama K. Connectin, an elastic filamentous protein of striated muscle. Int Rev Cytol. 1986;104:81–114. doi: 10.1016/s0074-7696(08)61924-5. [DOI] [PubMed] [Google Scholar]
  21. Moss R. L., Sollins M. R., Julian F. J. Calcium activation produces a characteristic response to stretch in both skeletal and cardiac muscle. Nature. 1976 Apr 15;260(5552):619–621. doi: 10.1038/260619a0. [DOI] [PubMed] [Google Scholar]
  22. Nave R., Fürst D., Vinkemeier U., Weber K. Purification and physical properties of nematode mini-titins and their relation to twitchin. J Cell Sci. 1991 Apr;98(Pt 4):491–496. doi: 10.1242/jcs.98.4.491. [DOI] [PubMed] [Google Scholar]
  23. Nave R., Weber K. A myofibrillar protein of insect muscle related to vertebrate titin connects Z band and A band: purification and molecular characterization of invertebrate mini-titin. J Cell Sci. 1990 Apr;95(Pt 4):535–544. doi: 10.1242/jcs.95.4.535. [DOI] [PubMed] [Google Scholar]
  24. Pringle J. W. The Croonian Lecture, 1977. Stretch activation of muscle: function and mechanism. Proc R Soc Lond B Biol Sci. 1978 May 5;201(1143):107–130. doi: 10.1098/rspb.1978.0035. [DOI] [PubMed] [Google Scholar]
  25. Reedy M. K., Leonard K. R., Freeman R., Arad T. Thick myofilament mass determination by electron scattering measurements with the scanning transmission electron microscope. J Muscle Res Cell Motil. 1981 Mar;2(1):45–64. doi: 10.1007/BF00712061. [DOI] [PubMed] [Google Scholar]
  26. Schoenberg M. Characterization of the myosin adenosine triphosphate (M.ATP) crossbridge in rabbit and frog skeletal muscle fibers. Biophys J. 1988 Jul;54(1):135–148. doi: 10.1016/S0006-3495(88)82938-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sobue K., Sellers J. R. Caldesmon, a novel regulatory protein in smooth muscle and nonmuscle actomyosin systems. J Biol Chem. 1991 Jul 5;266(19):12115–12118. [PubMed] [Google Scholar]
  28. Somerville L. L., Wang K. The ultrasensitive silver "protein" stain also detects nanograms of nucleic acids. Biochem Biophys Res Commun. 1981 Sep 16;102(1):53–58. doi: 10.1016/0006-291x(81)91487-x. [DOI] [PubMed] [Google Scholar]
  29. Squire J. M. Muscle filament lattices and stretch-activation: the match-mismatch model reassessed. J Muscle Res Cell Motil. 1992 Apr;13(2):183–189. doi: 10.1007/BF01874155. [DOI] [PubMed] [Google Scholar]
  30. Thorson J., White D. C. Role of cross-bridge distortion in the small-signal mechanical dynamics of insect and rabbit striated muscle. J Physiol. 1983 Oct;343:59–84. doi: 10.1113/jphysiol.1983.sp014881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Trinick J. Elastic filaments and giant proteins in muscle. Curr Opin Cell Biol. 1991 Feb;3(1):112–119. doi: 10.1016/0955-0674(91)90173-v. [DOI] [PubMed] [Google Scholar]
  32. Trombitas K., Tigyi-Sebes A. The continuity of thick filaments between sarcomeres in honey bee flight muscle. Nature. 1979 Sep 27;281(5729):319–320. doi: 10.1038/281319a0. [DOI] [PubMed] [Google Scholar]
  33. Wang K., McCarter R., Wright J., Beverly J., Ramirez-Mitchell R. Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7101–7105. doi: 10.1073/pnas.88.16.7101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wang K. Sarcomere-associated cytoskeletal lattices in striated muscle. Review and hypothesis. Cell Muscle Motil. 1985;6:315–369. doi: 10.1007/978-1-4757-4723-2_10. [DOI] [PubMed] [Google Scholar]
  35. White D. C. The elasticity of relaxed insect fibrillar flight muscle. J Physiol. 1983 Oct;343:31–57. doi: 10.1113/jphysiol.1983.sp014880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yamakawa M., Goldman Y. E. Mechanical transients initiated by photolysis of caged ATP within fibers of insect fibrillar flight muscle. J Gen Physiol. 1991 Oct;98(4):657–679. doi: 10.1085/jgp.98.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES