Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1993 Feb 1;101(2):183–205. doi: 10.1085/jgp.101.2.183

Protein kinase C sensitizes olfactory adenylate cyclase

PMCID: PMC2216762  PMID: 8095969

Abstract

Effects of neurotransmitters on cAMP-mediated signal transduction in frog olfactory receptor cells (ORCs) were studied using in situ spike recordings and radioimmunoassays. Carbachol, applied to the mucosal side of olfactory epithelium, amplified the electrical response of ORCs to cAMP-generating odorants, but did not affect unstimulated cells. A similar augmentation of odorant response was observed in the presence of phorbol dibutyrate (PDBu), an activator of protein kinase C (PKC). The electrical response to forskolin, an activator of adenylate cyclase (AC), was also enhanced by PDBu, and it was attenuated by the PKC inhibitor Goe 6983. Forskolin-induced accumulation of cAMP in olfactory tissue was potentiated by carbachol, serotonin, and PDBu to a similar extent. Potentiation was completely suppressed by the PKC inhibitors Goe 6983, staurosporine, and polymyxin B, suggesting that the sensitivity of olfactory AC to stimulation by odorants and forskolin was increased by PKC. Experiments with deciliated olfactory tissue indicated that sensitization of AC was restricted to sensory cilia of ORCs. To study the effects of cell Ca2+ on these mechanisms, the intracellular Ca2+ concentration of olfactory tissue was either increased by ionomycin or decreased by BAPTA/AM. Increasing cell Ca2+ had two effects on cAMP production: (a) the basal cAMP production was enhanced by a mechanism sensitive to inhibitors of calmodulin; and (b) similar to phorbol ester, cell Ca2+ caused sensitization of AC to stimulation by forskolin, an effect sensitive to Goe 6983. Decreasing cell Ca2+ below basal levels rendered AC unresponsive to stimulation by forskolin. These data suggest that a crosstalk mechanism is functional in frog ORCs, linking the sensitivity of AC to the activity of PKC. At increased activity of PKC, olfactory AC becomes more responsive to stimulation by odorants, forskolin, and cell Ca2+. Neurotransmitters appear to use this crosstalk mechanism to regulate olfactory sensitivity.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anholt R. R. Functional reconstitution of the olfactory membrane: incorporation of the olfactory adenylate cyclase in liposomes. Biochemistry. 1988 Aug 23;27(17):6464–6468. doi: 10.1021/bi00417a040. [DOI] [PubMed] [Google Scholar]
  2. Anholt R. R. Molecular physiology of olfaction. Am J Physiol. 1989 Dec;257(6 Pt 1):C1043–C1054. doi: 10.1152/ajpcell.1989.257.6.C1043. [DOI] [PubMed] [Google Scholar]
  3. Anholt R. R., Mumby S. M., Stoffers D. A., Girard P. R., Kuo J. F., Snyder S. H. Transduction proteins of olfactory receptor cells: identification of guanine nucleotide binding proteins and protein kinase C. Biochemistry. 1987 Feb 10;26(3):788–795. doi: 10.1021/bi00377a020. [DOI] [PubMed] [Google Scholar]
  4. Anholt R. R., Rivers A. M. Olfactory transduction: cross-talk between second-messenger systems. Biochemistry. 1990 May 1;29(17):4049–4054. doi: 10.1021/bi00469a004. [DOI] [PubMed] [Google Scholar]
  5. Asanuma N., Nomura H. Cytochemical localization of adenylate cyclase activity in rat olfactory cells. Histochem J. 1991 Feb;23(2):83–90. doi: 10.1007/BF01047112. [DOI] [PubMed] [Google Scholar]
  6. Bakalyar H. A., Reed R. R. Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science. 1990 Dec 7;250(4986):1403–1406. doi: 10.1126/science.2255909. [DOI] [PubMed] [Google Scholar]
  7. Bell J. D., Brunton L. L. Enhancement of adenylate cyclase activity in S49 lymphoma cells by phorbol esters. Withdrawal of GTP-dependent inhibition. J Biol Chem. 1986 Sep 15;261(26):12036–12041. [PubMed] [Google Scholar]
  8. Biffo S., Goren T., Khew-Goodall Y. S., Miara J., Margolis F. L. Expression of calmodulin mRNA in rat olfactory neuroepithelium. Brain Res Mol Brain Res. 1991 Apr;10(1):13–21. doi: 10.1016/0169-328x(91)90051-x. [DOI] [PubMed] [Google Scholar]
  9. Boekhoff I., Breer H. Termination of second messenger signaling in olfaction. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):471–474. doi: 10.1073/pnas.89.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Boekhoff I., Tareilus E., Strotmann J., Breer H. Rapid activation of alternative second messenger pathways in olfactory cilia from rats by different odorants. EMBO J. 1990 Aug;9(8):2453–2458. doi: 10.1002/j.1460-2075.1990.tb07422.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Borisy F. F., Ronnett G. V., Cunningham A. M., Juilfs D., Beavo J., Snyder S. H. Calcium/calmodulin-activated phosphodiesterase expressed in olfactory receptor neurons. J Neurosci. 1992 Mar;12(3):915–923. doi: 10.1523/JNEUROSCI.12-03-00915.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bouvet J. F., Delaleu J. C., Holley A. Olfactory receptor cell function is affected by trigeminal nerve activity. Neurosci Lett. 1987 Jun 15;77(2):181–186. doi: 10.1016/0304-3940(87)90583-0. [DOI] [PubMed] [Google Scholar]
  13. Bouvet J. F., Delaleu J. C., Holley A. The activity of olfactory receptor cells is affected by acetylcholine and substance P. Neurosci Res. 1988 Feb;5(3):214–223. doi: 10.1016/0168-0102(88)90050-8. [DOI] [PubMed] [Google Scholar]
  14. Boyle A. G., Park Y. S., Huque T., Bruch R. C. Properties of phospholipase C in isolated olfactory cilia from the channel catfish (Ictalurus punctatus). Comp Biochem Physiol B. 1987;88(3):767–775. doi: 10.1016/0305-0491(87)90242-2. [DOI] [PubMed] [Google Scholar]
  15. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  16. Breer H., Boekhoff I., Tareilus E. Rapid kinetics of second messenger formation in olfactory transduction. Nature. 1990 May 3;345(6270):65–68. doi: 10.1038/345065a0. [DOI] [PubMed] [Google Scholar]
  17. Buck L., Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991 Apr 5;65(1):175–187. doi: 10.1016/0092-8674(91)90418-x. [DOI] [PubMed] [Google Scholar]
  18. Bushfield M., Lavan B. E., Houslay M. D. Okadaic acid identifies a phosphorylation/dephosphorylation cycle controlling the inhibitory guanine-nucleotide-binding regulatory protein Gi2. Biochem J. 1991 Mar 1;274(Pt 2):317–321. doi: 10.1042/bj2740317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Chen Z., Lancet D. Membrane proteins unique to vertebrate olfactory cilia: candidates for sensory receptor molecules. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1859–1863. doi: 10.1073/pnas.81.6.1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Chen Z., Pace U., Heldman J., Shapira A., Lancet D. Isolated frog olfactory cilia: a preparation of dendritic membranes from chemosensory neurons. J Neurosci. 1986 Aug;6(8):2146–2154. doi: 10.1523/JNEUROSCI.06-08-02146.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Choi E. J., Toscano W. A., Jr Modulation of adenylate cyclase in human keratinocytes by protein kinase C. J Biol Chem. 1988 Nov 15;263(32):17167–17172. [PubMed] [Google Scholar]
  22. Choi E. J., Wong S. T., Hinds T. R., Storm D. R. Calcium and muscarinic agonist stimulation of type I adenylylcyclase in whole cells. J Biol Chem. 1992 Jun 25;267(18):12440–12442. [PubMed] [Google Scholar]
  23. Choi E. J., Xia Z., Storm D. R. Stimulation of the type III olfactory adenylyl cyclase by calcium and calmodulin. Biochemistry. 1992 Jul 21;31(28):6492–6498. doi: 10.1021/bi00143a019. [DOI] [PubMed] [Google Scholar]
  24. Cornell-Bell A. H., Finkbeiner S. M. Ca2+ waves in astrocytes. Cell Calcium. 1991 Feb-Mar;12(2-3):185–204. doi: 10.1016/0143-4160(91)90020-f. [DOI] [PubMed] [Google Scholar]
  25. Cornell-Bell A. H., Finkbeiner S. M., Cooper M. S., Smith S. J. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science. 1990 Jan 26;247(4941):470–473. doi: 10.1126/science.1967852. [DOI] [PubMed] [Google Scholar]
  26. Costanzo R. M., Morrison E. E. Three-dimensional scanning electron microscopic study of the normal hamster olfactory epithelium. J Neurocytol. 1989 Jun;18(3):381–391. doi: 10.1007/BF01190841. [DOI] [PubMed] [Google Scholar]
  27. Darfler F. J., Mahan L. C., Koachman A. M., Insel P. A. Stimulation of forskolin of intact S49 lymphoma cells involves the nucleotide regulatory protein of adenylate cyclase. J Biol Chem. 1982 Oct 25;257(20):11901–11907. [PubMed] [Google Scholar]
  28. Dhallan R. S., Yau K. W., Schrader K. A., Reed R. R. Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature. 1990 Sep 13;347(6289):184–187. doi: 10.1038/347184a0. [DOI] [PubMed] [Google Scholar]
  29. Eliot L. S., Dudai Y., Kandel E. R., Abrams T. W. Ca2+/calmodulin sensitivity may be common to all forms of neural adenylate cyclase. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9564–9568. doi: 10.1073/pnas.86.23.9564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Firestein S., Werblin F. Odor-induced membrane currents in vertebrate-olfactory receptor neurons. Science. 1989 Apr 7;244(4900):79–82. doi: 10.1126/science.2704991. [DOI] [PubMed] [Google Scholar]
  31. Firestein S., Zufall F., Shepherd G. M. Single odor-sensitive channels in olfactory receptor neurons are also gated by cyclic nucleotides. J Neurosci. 1991 Nov;11(11):3565–3572. doi: 10.1523/JNEUROSCI.11-11-03565.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Frings S., Benz S., Lindemann B. Current recording from sensory cilia of olfactory receptor cells in situ. II. Role of mucosal Na+, K+, and Ca2+ ions. J Gen Physiol. 1991 Apr;97(4):725–747. doi: 10.1085/jgp.97.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Frings S., Lindemann B. Current recording from sensory cilia of olfactory receptor cells in situ. I. The neuronal response to cyclic nucleotides. J Gen Physiol. 1991 Jan;97(1):1–16. doi: 10.1085/jgp.97.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Frings S., Lindemann B. Single unit recording from olfactory cilia. Biophys J. 1990 May;57(5):1091–1094. doi: 10.1016/S0006-3495(90)82627-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Frings S., Lynch J. W., Lindemann B. Properties of cyclic nucleotide-gated channels mediating olfactory transduction. Activation, selectivity, and blockage. J Gen Physiol. 1992 Jul;100(1):45–67. doi: 10.1085/jgp.100.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Gietzen K., Wüthrich A., Bader H. R 24571: a new powerful inhibitor of red blood cell Ca++-transport ATPase and of calmodulin-regulated functions. Biochem Biophys Res Commun. 1981 Jul 30;101(2):418–425. doi: 10.1016/0006-291x(81)91276-6. [DOI] [PubMed] [Google Scholar]
  37. Gordeladze J. O., Björo T., Torjesen P. A., Ostberg B. C., Haug E., Gautvik K. M. Protein kinase C stimulates adenylate cyclase activity in prolactin-secreting rat adenoma (GH4C1) pituicytes by inactivating the inhibitory GTP-binding protein Gi. Eur J Biochem. 1989 Aug 1;183(2):397–406. doi: 10.1111/j.1432-1033.1989.tb14941.x. [DOI] [PubMed] [Google Scholar]
  38. Hedlund B., Shepherd G. M. Biochemical studies on muscarinic receptors in the salamander olfactory epithelium. FEBS Lett. 1983 Oct 17;162(2):428–431. doi: 10.1016/0014-5793(83)80801-1. [DOI] [PubMed] [Google Scholar]
  39. Houslay M. D. 'Crosstalk': a pivotal role for protein kinase C in modulating relationships between signal transduction pathways. Eur J Biochem. 1991 Jan 1;195(1):9–27. doi: 10.1111/j.1432-1033.1991.tb15671.x. [DOI] [PubMed] [Google Scholar]
  40. Huang K. P. Role of protein kinase C in cellular regulation. Biofactors. 1990 Jul;2(3):171–178. [PubMed] [Google Scholar]
  41. Huque T., Bruch R. C. Odorant- and guanine nucleotide-stimulated phosphoinositide turnover in olfactory cilia. Biochem Biophys Res Commun. 1986 May 29;137(1):36–42. doi: 10.1016/0006-291x(86)91172-1. [DOI] [PubMed] [Google Scholar]
  42. Jones D. T., Reed R. R. Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science. 1989 May 19;244(4906):790–795. doi: 10.1126/science.2499043. [DOI] [PubMed] [Google Scholar]
  43. Kalinoski D. L., Aldinger S. B., Boyle A. G., Huque T., Marecek J. F., Prestwich G. D., Restrepo D. Characterization of a novel inositol 1,4,5-trisphosphate receptor in isolated olfactory cilia. Biochem J. 1992 Jan 15;281(Pt 2):449–456. doi: 10.1042/bj2810449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Katada T., Gilman A. G., Watanabe Y., Bauer S., Jakobs K. H. Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem. 1985 Sep 2;151(2):431–437. doi: 10.1111/j.1432-1033.1985.tb09120.x. [DOI] [PubMed] [Google Scholar]
  45. Khan A. A., Steiner J. P., Snyder S. H. Plasma membrane inositol 1,4,5-trisphosphate receptor of lymphocytes: selective enrichment in sialic acid and unique binding specificity. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2849–2853. doi: 10.1073/pnas.89.7.2849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Kurahashi T. The response induced by intracellular cyclic AMP in isolated olfactory receptor cells of the newt. J Physiol. 1990 Nov;430:355–371. doi: 10.1113/jphysiol.1990.sp018295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Labarca P., Simon S. A., Anholt R. R. Activation by odorants of a multistate cation channel from olfactory cilia. Proc Natl Acad Sci U S A. 1988 Feb;85(3):944–947. doi: 10.1073/pnas.85.3.944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Lancet D. Vertebrate olfactory reception. Annu Rev Neurosci. 1986;9:329–355. doi: 10.1146/annurev.ne.09.030186.001553. [DOI] [PubMed] [Google Scholar]
  49. Lechleiter J. D., Clapham D. E. Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes. Cell. 1992 Apr 17;69(2):283–294. doi: 10.1016/0092-8674(92)90409-6. [DOI] [PubMed] [Google Scholar]
  50. Lowe G., Gold G. H. The spatial distributions of odorant sensitivity and odorant-induced currents in salamander olfactory receptor cells. J Physiol. 1991 Oct;442:147–168. doi: 10.1113/jphysiol.1991.sp018787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Lowe G., Nakamura T., Gold G. H. Adenylate cyclase mediates olfactory transduction for a wide variety of odorants. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5641–5645. doi: 10.1073/pnas.86.14.5641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Ludwig J., Margalit T., Eismann E., Lancet D., Kaupp U. B. Primary structure of cAMP-gated channel from bovine olfactory epithelium. FEBS Lett. 1990 Sep 17;270(1-2):24–29. doi: 10.1016/0014-5793(90)81226-e. [DOI] [PubMed] [Google Scholar]
  53. Maue R. A., Dionne V. E. Patch-clamp studies of isolated mouse olfactory receptor neurons. J Gen Physiol. 1987 Jul;90(1):95–125. doi: 10.1085/jgp.90.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Mazzei G. J., Katoh N., Kuo J. F. Polymyxin B is a more selective inhibitor for phospholipid-sensitive Ca2+-dependent protein kinase than for calmodulin-sensitive Ca2+-dependent protein kinase. Biochem Biophys Res Commun. 1982 Dec 31;109(4):1129–1133. doi: 10.1016/0006-291x(82)91894-0. [DOI] [PubMed] [Google Scholar]
  55. Menco B. P., Bruch R. C., Dau B., Danho W. Ultrastructural localization of olfactory transduction components: the G protein subunit Golf alpha and type III adenylyl cyclase. Neuron. 1992 Mar;8(3):441–453. doi: 10.1016/0896-6273(92)90272-f. [DOI] [PubMed] [Google Scholar]
  56. Miyake R., Tanaka Y., Tsuda T., Kaibuchi K., Kikkawa U., Nishizuka Y. Activation of protein kinase C by non-phorbol tumor promoter, mezerein. Biochem Biophys Res Commun. 1984 Jun 15;121(2):649–656. doi: 10.1016/0006-291x(84)90231-6. [DOI] [PubMed] [Google Scholar]
  57. Miyamoto T., Restrepo D., Cragoe E. J., Jr, Teeter J. H. IP3- and cAMP-induced responses in isolated olfactory receptor neurons from the channel catfish. J Membr Biol. 1992 May;127(3):173–183. doi: 10.1007/BF00231505. [DOI] [PubMed] [Google Scholar]
  58. Nakamura T., Gold G. H. A cyclic nucleotide-gated conductance in olfactory receptor cilia. 1987 Jan 29-Feb 4Nature. 325(6103):442–444. doi: 10.1038/325442a0. [DOI] [PubMed] [Google Scholar]
  59. Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
  60. Pace U., Hanski E., Salomon Y., Lancet D. Odorant-sensitive adenylate cyclase may mediate olfactory reception. Nature. 1985 Jul 18;316(6025):255–258. doi: 10.1038/316255a0. [DOI] [PubMed] [Google Scholar]
  61. Pfeuffer E., Mollner S., Lancet D., Pfeuffer T. Olfactory adenylyl cyclase. Identification and purification of a novel enzyme form. J Biol Chem. 1989 Nov 5;264(31):18803–18807. [PubMed] [Google Scholar]
  62. Restrepo D., Miyamoto T., Bryant B. P., Teeter J. H. Odor stimuli trigger influx of calcium into olfactory neurons of the channel catfish. Science. 1990 Sep 7;249(4973):1166–1168. doi: 10.1126/science.2168580. [DOI] [PubMed] [Google Scholar]
  63. Ronnett G. V., Parfitt D. J., Hester L. D., Snyder S. H. Odorant-sensitive adenylate cyclase: rapid, potent activation and desensitization in primary olfactory neuronal cultures. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2366–2369. doi: 10.1073/pnas.88.6.2366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Rozengurt E., Murray M., Zachary I., Collins M. Protein kinase C activation enhances cAMP accumulation in Swiss 3T3 cells: inhibition by pertussis toxin. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2282–2286. doi: 10.1073/pnas.84.8.2282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Rüegg U. T., Burgess G. M. Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol Sci. 1989 Jun;10(6):218–220. doi: 10.1016/0165-6147(89)90263-0. [DOI] [PubMed] [Google Scholar]
  66. Seamon K. B., Daly J. W. Forskolin: its biological and chemical properties. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1986;20:1–150. [PubMed] [Google Scholar]
  67. Sibley D. R., Jeffs R. A., Daniel K., Nambi P., Lefkowitz R. J. Phorbol diester treatment promotes enhanced adenylate cyclase activity in frog erythrocytes. Arch Biochem Biophys. 1986 Jan;244(1):373–381. doi: 10.1016/0003-9861(86)90126-8. [DOI] [PubMed] [Google Scholar]
  68. Silver W. L., Moulton D. G. Chemosensitivity of rat nasal trigeminal receptors. Physiol Behav. 1982 May;28(5):927–931. doi: 10.1016/0031-9384(82)90216-5. [DOI] [PubMed] [Google Scholar]
  69. Simmoteit R., Schulzki H. D., Palm D., Mollner S., Pfeuffer T. Chemical and functional analysis of components of adenylyl cyclase from human platelets treated with phorbolesters. FEBS Lett. 1991 Jul 8;285(1):99–103. doi: 10.1016/0014-5793(91)80734-k. [DOI] [PubMed] [Google Scholar]
  70. Sklar P. B., Anholt R. R., Snyder S. H. The odorant-sensitive adenylate cyclase of olfactory receptor cells. Differential stimulation by distinct classes of odorants. J Biol Chem. 1986 Nov 25;261(33):15538–15543. [PubMed] [Google Scholar]
  71. Snyder S. H., Sklar P. B., Pevsner J. Molecular mechanisms of olfaction. J Biol Chem. 1988 Oct 5;263(28):13971–13974. [PubMed] [Google Scholar]
  72. Tsien R. Y. A non-disruptive technique for loading calcium buffers and indicators into cells. Nature. 1981 Apr 9;290(5806):527–528. doi: 10.1038/290527a0. [DOI] [PubMed] [Google Scholar]
  73. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
  74. Wier W. G., Blatter L. A. Ca(2+)-oscillations and Ca(2+)-waves in mammalian cardiac and vascular smooth muscle cells. Cell Calcium. 1991 Feb-Mar;12(2-3):241–254. doi: 10.1016/0143-4160(91)90024-9. [DOI] [PubMed] [Google Scholar]
  75. Yoshimasa T., Sibley D. R., Bouvier M., Lefkowitz R. J., Caron M. G. Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. Nature. 1987 May 7;327(6117):67–70. doi: 10.1038/327067a0. [DOI] [PubMed] [Google Scholar]
  76. Zielinski B. S., Getchell M. L., Getchell T. V. Ultrastructural evidence for peptidergic innervation of the apical region of frog olfactory epithelium. Brain Res. 1989 Jul 17;492(1-2):361–365. doi: 10.1016/0006-8993(89)90920-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES