Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1993 Mar 1;101(3):453–465. doi: 10.1085/jgp.101.3.453

Anion modulation of taste responses in sodium-sensitive neurons of the hamster chorda tympani nerve

PMCID: PMC2216765  PMID: 8473851

Abstract

Beidler's work in the 1950s showed that anions can strongly influence gustatory responses to sodium salts. We have demonstrated "anion inhibition" in the hamster by showing that the chorda tympani nerve responds more strongly to NaCl than to Na acetate over a wide range of concentrations. Iontophoretic presentation of Cl- and acetate to the anterior tongue elicited no response in the chorda tympani, suggesting that these anions are not directly stimulatory. Drugs (0.01, 1.0, and 100 microM anthracene-9-carboxylate, diphenylamine-2-carboxylate, 4- acetamido-4'-isothiocyanatostilbene-2,2'-disulfonate, and furosemide) that interfere with movements of Cl- across epithelial cells were ineffective in altering chorda tympani responses to 0.03 M of either NaCl or Na acetate. Anion inhibition related to movements of anions across epithelial membranes therefore seems unlikely. The chorda tympani contains a population of nerve fibers highly selective for Na+ (N fibers) and another population sensitive to Na+ as well as other salts and acids (H fibers). We found that N fibers respond similarly to NaCl and Na acetate, with spiking activity increasing with increasing stimulus concentration (0.01-1.0 M). H fibers, however, respond more strongly to NaCl than to Na acetate. Furthermore, H fibers increase spiking with increases in NaCl concentration, but generally decrease their responses to increasing concentrations of Na acetate. It appears that anion inhibition applies to taste cells innervated by H fibers but not by N fibers. Taste cells innervated by N fibers use an apical Na+ channel, whereas those innervated by H fibers may use a paracellularly mediated, basolateral site of excitation.

Full Text

The Full Text of this article is available as a PDF (969.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEIDLER L. M. A theory of taste stimulation. J Gen Physiol. 1954 Nov 20;38(2):133–139. doi: 10.1085/jgp.38.2.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BEIDLER L. M. Properties of chemoreceptors of tongue of rat. J Neurophysiol. 1953 Nov;16(6):595–607. doi: 10.1152/jn.1953.16.6.595. [DOI] [PubMed] [Google Scholar]
  3. Beidler L. M., Gross G. W. The nature of taste receptor sites. Contrib Sens Physiol. 1971;5:97–127. doi: 10.1016/b978-0-12-151805-9.50009-2. [DOI] [PubMed] [Google Scholar]
  4. Elliott E. J., Simon S. A. The anion in salt taste: a possible role for paracellular pathways. Brain Res. 1990 Dec 3;535(1):9–17. doi: 10.1016/0006-8993(90)91817-z. [DOI] [PubMed] [Google Scholar]
  5. Formaker B. K., Hill D. L. An analysis of residual NaCl taste response after amiloride. Am J Physiol. 1988 Dec;255(6 Pt 2):R1002–R1007. doi: 10.1152/ajpregu.1988.255.6.R1002. [DOI] [PubMed] [Google Scholar]
  6. Frank M. E., Bieber S. L., Smith D. V. The organization of taste sensibilities in hamster chorda tympani nerve fibers. J Gen Physiol. 1988 Jun;91(6):861–896. doi: 10.1085/jgp.91.6.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frank M. E., Contreras R. J., Hettinger T. P. Nerve fibers sensitive to ionic taste stimuli in chorda tympani of the rat. J Neurophysiol. 1983 Oct;50(4):941–960. doi: 10.1152/jn.1983.50.4.941. [DOI] [PubMed] [Google Scholar]
  8. Fuchs W., Larsen E. H., Lindemann B. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. J Physiol. 1977 May;267(1):137–166. doi: 10.1113/jphysiol.1977.sp011805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Garty H., Benos D. J. Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel. Physiol Rev. 1988 Apr;68(2):309–373. doi: 10.1152/physrev.1988.68.2.309. [DOI] [PubMed] [Google Scholar]
  10. Hettinger T. P., Frank M. E. Specificity of amiloride inhibition of hamster taste responses. Brain Res. 1990 Apr 9;513(1):24–34. doi: 10.1016/0006-8993(90)91085-u. [DOI] [PubMed] [Google Scholar]
  11. Hyman A. M., Frank M. E. Sensitivities of single nerve fibers in the hamster chorda tympani to mixtures of taste stimuli. J Gen Physiol. 1980 Aug;76(2):143–173. doi: 10.1085/jgp.76.2.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mierson S., Heck G. L., DeSimone S. K., Biber T. U., DeSimone J. A. The identity of the current carriers in canine lingual epithelium in vitro. Biochim Biophys Acta. 1985 Jun 27;816(2):283–293. doi: 10.1016/0005-2736(85)90496-1. [DOI] [PubMed] [Google Scholar]
  13. Ninomiya Y., Funakoshi M. Amiloride inhibition of responses of rat single chorda tympani fibers to chemical and electrical tongue stimulations. Brain Res. 1988 Jun 7;451(1-2):319–325. doi: 10.1016/0006-8993(88)90777-9. [DOI] [PubMed] [Google Scholar]
  14. Singer I., Civan M. M. Effects of anions on sodium transport in toad urinary bladder. Am J Physiol. 1971 Oct;221(4):1019–1026. doi: 10.1152/ajplegacy.1971.221.4.1019. [DOI] [PubMed] [Google Scholar]
  15. Sostman A. L., Simon S. A. Trigeminal nerve responses in the rat elicited by chemical stimulation of the tongue. Arch Oral Biol. 1991;36(2):95–102. doi: 10.1016/0003-9969(91)90071-2. [DOI] [PubMed] [Google Scholar]
  16. Ye Q., Heck G. L., DeSimone J. A. The anion paradox in sodium taste reception: resolution by voltage-clamp studies. Science. 1991 Nov 1;254(5032):724–726. doi: 10.1126/science.1948054. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES