Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1993 Mar 1;101(3):393–410. doi: 10.1085/jgp.101.3.393

Modulation of calcium channels in arterial smooth muscle cells by dihydropyridine enantiomers

PMCID: PMC2216766  PMID: 7682596

Abstract

The actions of the optical enantiomers of BAY K 8644 and Sandoz 202,791 were studied on barium inward currents recorded using the whole-cell configuration of the patch clamp technique from enzymatically isolated smooth muscle cells from the rabbit ear artery. The enantiomers were applied by bath perfusion or rapidly by a concentration jump technique, which enabled the study of drug action under equilibrium and nonequilibrium conditions. A larger effect of agonists was seen on peak inward current in 110 mM Ba when small rather than large depolarizations were applied. The midpoint voltage of the steady-state inactivation curve of IBa was -12.8 +/- 1.9 mV (n = 4) in the absence of drug, -16.4 +/- 2.5 mV (n = 4) in 1 microM (+)202,791, and -31.4 +/- 0.4 mV (n = 4) in 1 microM (-)202,791. The rate of onset of action of the agonist and antagonist enantiomers of BAY K 8644 and Sandoz 202,791 was studied by rapid application during 20-ms depolarizing steps from different holding potentials to +30 mV at 1 or 0.2 Hz. The drugs were applied as concentration jumps between two single pulses of a pulse train. The rates of onset of drug action on peak IBa during a 1-Hz pulse train were concentration dependent over the range of 100 nM-3 microM for both (+) and (-)202,791. The rate of onset of inhibition of peak current by antagonist enantiomers was not significantly influenced by the test pulse frequency. At a holding potential of -60 mV, the onset rate of the increase in peak IBa on application of 1 microM of agonist enantiomers (+)202,791 or (-)BAY K 8644 during a train of pulses occurred with mean time constants of 2.1 +/- 0.7 s (n = 7) and 2.3 +/- 0.2 s (n = 4), respectively. The onset of current increase on application of 1 microM (+)202,791 during a single voltage clamp step to 20 mV was faster, with a mean time constant of 380 +/- 80 ms (n = 3).

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaronson P. I., Bolton T. B., Lang R. J., MacKenzie I. Calcium currents in single isolated smooth muscle cells from the rabbit ear artery in normal-calcium and high-barium solutions. J Physiol. 1988 Nov;405:57–75. doi: 10.1113/jphysiol.1988.sp017321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bean B. P. Nitrendipine block of cardiac calcium channels: high-affinity binding to the inactivated state. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6388–6392. doi: 10.1073/pnas.81.20.6388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bean B. P., Sturek M., Puga A., Hermsmeyer K. Calcium channels in muscle cells isolated from rat mesenteric arteries: modulation by dihydropyridine drugs. Circ Res. 1986 Aug;59(2):229–235. doi: 10.1161/01.res.59.2.229. [DOI] [PubMed] [Google Scholar]
  4. Bechem M., Schramm M. Calcium-agonists. J Mol Cell Cardiol. 1987 May;19 (Suppl 2):63–75. doi: 10.1016/s0022-2828(87)80005-6. [DOI] [PubMed] [Google Scholar]
  5. Benham C. D., Bolton T. B. Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit. J Physiol. 1986 Dec;381:385–406. doi: 10.1113/jphysiol.1986.sp016333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown A. M., Kunze D. L., Yatani A. Dual effects of dihydropyridines on whole cell and unitary calcium currents in single ventricular cells of guinea-pig. J Physiol. 1986 Oct;379:495–514. doi: 10.1113/jphysiol.1986.sp016266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Caffrey J. M., Josephson I. R., Brown A. M. Calcium channels of amphibian stomach and mammalian aorta smooth muscle cells. Biophys J. 1986 Jun;49(6):1237–1242. doi: 10.1016/S0006-3495(86)83753-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Glossmann H., Striessnig J. Molecular properties of calcium channels. Rev Physiol Biochem Pharmacol. 1990;114:1–105. doi: 10.1007/BFb0031018. [DOI] [PubMed] [Google Scholar]
  9. Gurney A. M., Nerbonne J. M., Lester H. A. Photoinduced removal of nifedipine reveals mechanisms of calcium antagonist action on single heart cells. J Gen Physiol. 1985 Sep;86(3):353–379. doi: 10.1085/jgp.86.3.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  11. Hering S., Beech D. J., Bolton T. B. A simple method of fast extracellular solution exchange for the study of whole-cell or single channel currents using patch-clamp technique. Pflugers Arch. 1987 Oct;410(3):335–337. doi: 10.1007/BF00580285. [DOI] [PubMed] [Google Scholar]
  12. Hering S., Beech D. J., Bolton T. B., Lim S. P. Action of nifedipine or BAY K8644 is dependent on calcium channel state in single smooth muscle cells from rabbit ear artery. Pflugers Arch. 1988 May;411(5):590–592. doi: 10.1007/BF00582383. [DOI] [PubMed] [Google Scholar]
  13. Hering S., Bolton T. B., Beech D. J., Lim S. P. Mechanism of calcium channel block by D600 in single smooth muscle cells from rabbit ear artery. Circ Res. 1989 May;64(5):928–936. doi: 10.1161/01.res.64.5.928. [DOI] [PubMed] [Google Scholar]
  14. Hering S., Kleppisch T., Timin E. N., Bodewei R. Characterization of the calcium channel state transitions induced by the enantiomers of the 1,4-dihydropyridine Sandoz 202 791 in neonatal rat heart cells. A nonmodulated receptor model. Pflugers Arch. 1989 Sep;414(6):690–700. doi: 10.1007/BF00582137. [DOI] [PubMed] [Google Scholar]
  15. Hess P., Lansman J. B., Tsien R. W. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature. 1984 Oct 11;311(5986):538–544. doi: 10.1038/311538a0. [DOI] [PubMed] [Google Scholar]
  16. Hof R. P., Rüegg U. T., Hof A., Vogel A. Stereoselectivity at the calcium channel: opposite action of the enantiomers of a 1,4-dihydropyridine. J Cardiovasc Pharmacol. 1985 Jul-Aug;7(4):689–693. doi: 10.1097/00005344-198507000-00012. [DOI] [PubMed] [Google Scholar]
  17. Hughes A. D., Hering S., Bolton T. B. Evidence that agonist and antagonist enantiomers of the dihydropyridine PN 202-791 act at different sites on the voltage-dependent calcium channel of vascular muscle. Br J Pharmacol. 1990 Sep;101(1):3–5. doi: 10.1111/j.1476-5381.1990.tb12076.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Imaizumi Y., Muraki K., Takeda M., Watanabe M. Measurement and simulation of noninactivating Ca current in smooth muscle cells. Am J Physiol. 1989 Apr;256(4 Pt 1):C880–C885. doi: 10.1152/ajpcell.1989.256.4.C880. [DOI] [PubMed] [Google Scholar]
  19. Kamp T. J., Sanguinetti M. C., Miller R. J. Voltage- and use-dependent modulation of cardiac calcium channels by the dihydropyridine (+)-202-791. Circ Res. 1989 Feb;64(2):338–351. doi: 10.1161/01.res.64.2.338. [DOI] [PubMed] [Google Scholar]
  20. Kass R. S., Arena J. P., Chin S. Block of L-type calcium channels by charged dihydropyridines. Sensitivity to side of application and calcium. J Gen Physiol. 1991 Jul;98(1):63–75. doi: 10.1085/jgp.98.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kass R. S. Voltage-dependent modulation of cardiac calcium channel current by optical isomers of Bay K 8644: implications for channel gating. Circ Res. 1987 Oct;61(4 Pt 2):I1–I5. [PubMed] [Google Scholar]
  22. Knaus H. G., Striessnig J., Hering S., Marrer S., Schwenner E., Höltje H. D., Glossmann H. [35S]sadopine, a novel high affinity, high specific activity, L-type Ca2+ channel probe: characterization of two equipotent diastereomers with opposite allosteric properties. Mol Pharmacol. 1992 Feb;41(2):298–307. [PubMed] [Google Scholar]
  23. Kokubun S., Prod'hom B., Becker C., Porzig H., Reuter H. Studies on Ca channels in intact cardiac cells: voltage-dependent effects and cooperative interactions of dihydropyridine enantiomers. Mol Pharmacol. 1986 Dec;30(6):571–584. [PubMed] [Google Scholar]
  24. Lacerda A. E., Brown A. M. Nonmodal gating of cardiac calcium channels as revealed by dihydropyridines. J Gen Physiol. 1989 Jun;93(6):1243–1273. doi: 10.1085/jgp.93.6.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lee K. S., Tsien R. W. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature. 1983 Apr 28;302(5911):790–794. doi: 10.1038/302790a0. [DOI] [PubMed] [Google Scholar]
  26. Marks T. N., Jones S. W. Calcium currents in the A7r5 smooth muscle-derived cell line. An allosteric model for calcium channel activation and dihydropyridine agonist action. J Gen Physiol. 1992 Mar;99(3):367–390. doi: 10.1085/jgp.99.3.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Markwardt F., Nilius B. Modulation of calcium channel currents in guinea-pig single ventricular heart cells by the dihydropyridine Bay K 8644. J Physiol. 1988 May;399:559–575. doi: 10.1113/jphysiol.1988.sp017096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mironneau J., Yamamoto T., Sayet I., Arnaudeau S., Rakotoarisoa L., Mironneau C. Effect of dihydropyridines on calcium channels in isolated smooth muscle cells from rat vena cava. Br J Pharmacol. 1992 Feb;105(2):321–328. doi: 10.1111/j.1476-5381.1992.tb14253.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nowycky M. C., Fox A. P., Tsien R. W. Long-opening mode of gating of neuronal calcium channels and its promotion by the dihydropyridine calcium agonist Bay K 8644. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2178–2182. doi: 10.1073/pnas.82.7.2178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sanguinetti M. C., Kass R. S. Voltage-dependent block of calcium channel current in the calf cardiac Purkinje fiber by dihydropyridine calcium channel antagonists. Circ Res. 1984 Sep;55(3):336–348. doi: 10.1161/01.res.55.3.336. [DOI] [PubMed] [Google Scholar]
  31. Sanguinetti M. C., Krafte D. S., Kass R. S. Voltage-dependent modulation of Ca channel current in heart cells by Bay K8644. J Gen Physiol. 1986 Sep;88(3):369–392. doi: 10.1085/jgp.88.3.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Terada K., Nakao K., Okabe K., Kitamura K., Kuriyama H. Action of the 1,4-dihydropyridine derivative, KW-3049, on the smooth muscle membrane of the rabbit mesenteric artery. Br J Pharmacol. 1987 Nov;92(3):615–625. doi: 10.1111/j.1476-5381.1987.tb11364.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yatani A., Seidel C. L., Allen J., Brown A. M. Whole-cell and single-channel calcium currents of isolated smooth muscle cells from saphenous vein. Circ Res. 1987 Apr;60(4):523–533. doi: 10.1161/01.res.60.4.523. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES