Abstract
Previous experiments with Escherichia coli strain 2S142 have shown that the synthesis of stable RNA is preferentially blocked at the restrictive temperature. In this paper, we have examined the capacity of this mutant strain to synthesize RNA in vitro. Growth of the strain for as short a period as 10 min at 42 degrees C resulted in a 40 to 60% loss of RNA synthetic capacity and a fourfold decrease in percent rRNA synthesized in toluenized cell preparations. The time course for the loss and recovery of this RNA synthetic capacity correlated very well with the changes in RNA synthesis observed in vivo. We found no difference in temperature sensitivity of the purified RNA polymerase from the mutant and the parental strains. Moreover, there was no detectable alteration in the amount of enzyme, specific activity of the enzyme, or electrophoretic mobility of the subunits when the mutant strain was grown at 42 degrees C. The capacity for rRNA synthesis was also measured with the Zubay in vitro system (Reiness et al., Proc. Natl. Acad. Sci. 72:2881-2885, 1975). Supernatant fractions (S-30) prepared from cells grown at 30 degrees C were capable of up to 31.2% rRNA synthesis, using phi 80d3 DNA as template. S-30 fractions from cells grown at 42 degrees C synthesized 8.6% rRNA. The bottom one-third of the S-100 fraction and the ribosomal salt wash from 30 degrees C cells contained one or more factors which partially restored preferential rRNA synthesis in S-30 fractions from cells grown at 42 degrees C. Preliminary evidence suggests that the factor(s) is protein in nature.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aboud M., Pastan I. Activation of transcription by guanosine 5'-diphosphate,3'-diphosphate, transfer ribonucleic acid, and novel protein from Escherichia coli. J Biol Chem. 1975 Mar 25;250(6):2189–2195. [PubMed] [Google Scholar]
- Atherly A. G. Ribonucleic acid regulation in premeabilized cells of Escherichia coli capable of ribonucleic acid and protein synthesis. J Bacteriol. 1974 Jun;118(3):1186–1189. doi: 10.1128/jb.118.3.1186-1189.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyle S. M., Chu F., Brot N., Sells B. H. The relationship between the spoT gene, the synthesis of stable RNA, ribosomal proteins, and the beta beta' subunits of RNA polymerase following a nutritional shiftup of Escherichia coli. Can J Biochem. 1978 Jun;56(6):528–533. doi: 10.1139/o78-081. [DOI] [PubMed] [Google Scholar]
- Burgess R. R. A new method for the large scale purification of Escherichia coli deoxyribonucleic acid-dependent ribonucleic acid polymerase. J Biol Chem. 1969 Nov 25;244(22):6160–6167. [PubMed] [Google Scholar]
- Chaney S. G., Jackson J. M., 3rd, Harris J. S. A new mutation affecting ribosomal RNA synthesis in Escherichia coli. Biochemistry. 1977 Aug 9;16(16):3603–3607. doi: 10.1021/bi00635a016. [DOI] [PubMed] [Google Scholar]
- Chaney S. G., Schlessinger D. Escherichia coli mutants deficient in RNA accumulation at high temperature. Biochim Biophys Acta. 1975 Jan 6;378(1):80–91. doi: 10.1016/0005-2787(75)90139-2. [DOI] [PubMed] [Google Scholar]
- Chao L., Speyer J. F. A new form of RNA polymerase isolated from Escherichia coli. Biochem Biophys Res Commun. 1973 Mar 17;51(2):399–405. doi: 10.1016/0006-291x(73)91271-0. [DOI] [PubMed] [Google Scholar]
- Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
- Fukuda R., Iwakura Y., Ishihama A. Heterogeneity of RNA polymerase in Escherichia coli. I. A new holoenzyme containing a new sigma factor. J Mol Biol. 1974 Mar;83(3):353–367. doi: 10.1016/0022-2836(74)90284-8. [DOI] [PubMed] [Google Scholar]
- Gesteland R. F. Isolation and characterization of ribonuclease I mutants of Escherichia coli. J Mol Biol. 1966 Mar;16(1):67–84. doi: 10.1016/s0022-2836(66)80263-2. [DOI] [PubMed] [Google Scholar]
- Hansen M. T., Pato M. L., Molin S., Fill N. P., von Meyenburg K. Simple downshift and resulting lack of correlation between ppGpp pool size and ribonucleic acid accumulation. J Bacteriol. 1975 May;122(2):585–591. doi: 10.1128/jb.122.2.585-591.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris J. S., Chaney S. G. Guanine nucleotide metabolism in a mutant strain of Escherichia coli with a temperature sensitive lesion in rRNA synthesis. Biochim Biophys Acta. 1978 Dec 21;521(2):634–640. doi: 10.1016/0005-2787(78)90304-0. [DOI] [PubMed] [Google Scholar]
- Haseltine W. A. In vitro transcription of Escherichia coli ribosomal RNA genes. Nature. 1972 Feb 11;235(5337):329–333. doi: 10.1038/235329a0. [DOI] [PubMed] [Google Scholar]
- Jackson R. W., DeMoss J. A. Effects of toluene on Escherichia coli. J Bacteriol. 1965 Nov;90(5):1420–1425. doi: 10.1128/jb.90.5.1420-1425.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennel D. Titration of the gene sites on DNA by DNA-RNA hybridization. II. The Escherichia coli chromosome. J Mol Biol. 1968 May 28;34(1):85–103. doi: 10.1016/0022-2836(68)90236-2. [DOI] [PubMed] [Google Scholar]
- Kimura A. Regulation of ribonucleic acid synthesis in spheroplasts, cold-shocked cells, and toluene-treated cells of Escherichia coli. J Bacteriol. 1976 Oct;128(1):123–129. doi: 10.1128/jb.128.1.123-129.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kingston R. E., Gutell R. R., Taylor A. R., Chamberlin M. J. Transcriptional mapping of plasmid pKK3535. Quantitation of the effect of guanosine tetraphosphate on binding to the rrnB promoters and a lambda promoter with sequence homologies in the CII binding region. J Mol Biol. 1981 Mar 15;146(4):433–449. doi: 10.1016/0022-2836(81)90041-3. [DOI] [PubMed] [Google Scholar]
- Lazzarini R. A., Johnson L. D. Regulation of ribosomal RNA synthesis in cold-shocked E. coli. Nat New Biol. 1973 May 2;243(122):17–20. [PubMed] [Google Scholar]
- Moses R. E., Richardson C. C. Replication and repair of DNA in cells of Escherichia coli treated with toluene. Proc Natl Acad Sci U S A. 1970 Oct;67(2):674–681. doi: 10.1073/pnas.67.2.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murooka Y., Lazzarini R. A. In vitro synthesis of ribosomal ribonucleic acid by a deoxyribonucleic acid-protein complex isolated from Escherichia coli. J Biol Chem. 1973 Sep 10;248(17):6248–6250. [PubMed] [Google Scholar]
- Muto A. Control of ribosomal RNA synthesis in Escherichia coli. III. Cytoplasmic factors for ribosomal RNA synthesis. Mol Gen Genet. 1977 Apr 29;152(3):161–165. doi: 10.1007/BF00268813. [DOI] [PubMed] [Google Scholar]
- Nierlich D. P. Radioisotope uptake as a measure of synthesis of messenger RNA. Science. 1967 Dec 1;158(3805):1186–1188. doi: 10.1126/science.158.3805.1186. [DOI] [PubMed] [Google Scholar]
- Nierlich D. P. Regulation of bacterial growth, RNA, and protein synthesis. Annu Rev Microbiol. 1978;32:393–432. doi: 10.1146/annurev.mi.32.100178.002141. [DOI] [PubMed] [Google Scholar]
- Oishi M., Sueoka N. Location of genetic loci of ribosomal RNA on Bacillus subtilis chromosome. Proc Natl Acad Sci U S A. 1965 Aug;54(2):483–491. doi: 10.1073/pnas.54.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oostra B. A., Ab G., Gruber M. Specific stimulation of ribosomal RNA synthesis in E. coli by a protein factor. Mol Gen Genet. 1980 Jan;177(2):291–295. doi: 10.1007/BF00267441. [DOI] [PubMed] [Google Scholar]
- Oostra B. A., van Ooyen A. J., Gruber M. In vitro transcription of three different ribosomal RNA cistrons of E. coli; heterogeneity of control regions. Mol Gen Genet. 1977 Mar 28;152(1):1–6. doi: 10.1007/BF00264932. [DOI] [PubMed] [Google Scholar]
- Pao C. C., Dyess B. T. Stringent control of RNA synthesis in the absence of guanosine 5'-diphosphate-3'-diphosphate. J Biol Chem. 1981 Mar 10;256(5):2252–2257. [PubMed] [Google Scholar]
- Reiness G., Yang H. L., Zubay G., Cashel M. Effects of guanosine tetraphosphate on cell-free synthesis of Escherichia coli ribosomal RNA and other gene products. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2881–2885. doi: 10.1073/pnas.72.8.2881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- St John A. C., Goldberg A. L. Effects of reduced energy production on protein degradation, guanosine tetraphosphate, and RNA synthesis in Escherichia coli. J Biol Chem. 1978 Apr 25;253(8):2705–2711. [PubMed] [Google Scholar]
- Travers A. Control of ribosomal RNA synthesis in vitro. Nature. 1973 Jul 6;244(5410):15–18. doi: 10.1038/244015a0. [DOI] [PubMed] [Google Scholar]
- van Ooyen A. J., Gruber M., Jorgensen P. The mechanism of action of ppGpp on rRNA synthesis in vitro. Cell. 1976 May;8(1):123–128. doi: 10.1016/0092-8674(76)90193-8. [DOI] [PubMed] [Google Scholar]
