Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1993 Mar 1;101(3):337–353. doi: 10.1085/jgp.101.3.337

Rate-limiting steps in the beta-adrenergic stimulation of cardiac calcium current

PMCID: PMC2216770  PMID: 8386216

Abstract

Fast-flow perfusion and flash photolysis of caged compounds were used to study the activation kinetics of L-type calcium current (ICa) in frog cardiac myocytes. Rapid exposure to isoproterenol (Iso) for 1 s or approximately 1 min produced similar kinetics of increase in ICa with an initial lag period of approximately 3 s, followed by a monophasic rise in current with a half-time of approximately 20 s. Epinephrine, as well as caged Iso, produced increases with similar kinetics. The fact that ICa increased significantly even after short Iso applications suggests that agonist binding to the receptor is rapid and that the increase in ICa is independent of free agonist. To dissect the kinetic contributions of various steps in the cAMP-phosphorylation cascade, the kinetics of the responses to caged cAMP and caged GTP gamma S and fast perfusion of forskolin, acetylcholine, and propranolol were compared. The response to caged cAMP exhibited no lag period, but otherwise increased at a rate similar to that produced by Iso and reached a peak at approximately 40 s after flash photolysis. This suggests that the lag period itself is due to a step before cAMP accumulation, but that activation of protein kinase and phosphorylation of the calcium channel are relatively slow. A lag period was also observed when ICa was stimulated by flash photolysis of caged GTP gamma S and when adenylyl cyclase was activated directly by rapid perfusion with forskolin. The lag period observed with forskolin may be due to slow binding of forskolin. The lag period was not due to the time required for cAMP to reach a threshold concentration, because a similar lag was observed in response to Iso in cells having ICa previously stimulated submaximally by internal perfusion with a low concentration of cAMP. These results suggest that the lag period can be attributed to a step associated with activation of adenylyl cyclase and cAMP accumulation.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boutjdir M., Méry P. F., Hanf R., Shrier A., Fischmeister R. High affinity forskolin inhibition of L-type Ca2+ current in cardiac cells. Mol Pharmacol. 1990 Dec;38(6):758–765. [PubMed] [Google Scholar]
  2. Brandt D. R., Ross E. M. Catecholamine-stimulated GTPase cycle. Multiple sites of regulation by beta-adrenergic receptor and Mg2+ studied in reconstituted receptor-Gs vesicles. J Biol Chem. 1986 Feb 5;261(4):1656–1664. [PubMed] [Google Scholar]
  3. Breitwieser G. E., Szabo G. Mechanism of muscarinic receptor-induced K+ channel activation as revealed by hydrolysis-resistant GTP analogues. J Gen Physiol. 1988 Apr;91(4):469–493. doi: 10.1085/jgp.91.4.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fischmeister R., Hartzell H. C. Mechanism of action of acetylcholine on calcium current in single cells from frog ventricle. J Physiol. 1986 Jul;376:183–202. doi: 10.1113/jphysiol.1986.sp016148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fischmeister R., Shrier A. Interactive effects of isoprenaline, forskolin and acetylcholine on Ca2+ current in frog ventricular myocytes. J Physiol. 1989 Oct;417:213–239. doi: 10.1113/jphysiol.1989.sp017798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. García J., Gamboa-Aldeco R., Stefani E. Charge movement and calcium currents in skeletal muscle fibers are enhanced by GTP gamma S. Pflugers Arch. 1990 Sep;417(1):114–116. doi: 10.1007/BF00370779. [DOI] [PubMed] [Google Scholar]
  7. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  8. HUTTER O. F., TRAUTWEIN W. Vagal and sympathetic effects on the pacemaker fibers in the sinus venosus of the heart. J Gen Physiol. 1956 May 20;39(5):715–733. doi: 10.1085/jgp.39.5.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hancock A. A., DeLean A. L., Lefkowitz R. J. Quantitative resolution of beta-adrenergic receptor subtypes by selective ligand binding: application of a computerized model fitting technique. Mol Pharmacol. 1979 Jul;16(1):1–9. [PubMed] [Google Scholar]
  10. Hartzell H. C., Budnitz D. Differences in effects of forskolin and an analog on calcium currents in cardiac myocytes suggest intra- and extracellular sites of action. Mol Pharmacol. 1992 May;41(5):880–888. [PubMed] [Google Scholar]
  11. Hartzell H. C., Fischmeister R. Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature. 1986 Sep 18;323(6085):273–275. doi: 10.1038/323273a0. [DOI] [PubMed] [Google Scholar]
  12. Hartzell H. C., Méry P. F., Fischmeister R., Szabo G. Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation. Nature. 1991 Jun 13;351(6327):573–576. doi: 10.1038/351573a0. [DOI] [PubMed] [Google Scholar]
  13. Hartzell H. C. Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Prog Biophys Mol Biol. 1988;52(3):165–247. doi: 10.1016/0079-6107(88)90014-4. [DOI] [PubMed] [Google Scholar]
  14. Hartzell H. C., Simmons M. A. Comparison of effects of acetylcholine on calcium and potassium currents in frog atrium and ventricle. J Physiol. 1987 Aug;389:411–422. doi: 10.1113/jphysiol.1987.sp016663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heidenreich K. A., Weiland G. A., Molinoff P. B. Characterization of radiolabeled agonist binding to beta-adrenergic receptors in mammalian tissues. J Cyclic Nucleotide Res. 1980;6(3):217–230. [PubMed] [Google Scholar]
  16. May D. C., Ross E. M. Rapid binding of guanosine 5'-O-(3-thiotriphosphate) to an apparent complex of beta-adrenergic receptor and the GTP-binding regulatory protein Gs. Biochemistry. 1988 Jun 28;27(13):4888–4893. doi: 10.1021/bi00413a045. [DOI] [PubMed] [Google Scholar]
  17. Nakajima T., Wu S., Irisawa H., Giles W. Mechanism of acetylcholine-induced inhibition of Ca current in bullfrog atrial myocytes. J Gen Physiol. 1990 Oct;96(4):865–885. doi: 10.1085/jgp.96.4.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nargeot J., Nerbonne J. M., Engels J., Lester H. A. Time course of the increase in the myocardial slow inward current after a photochemically generated concentration jump of intracellular cAMP. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2395–2399. doi: 10.1073/pnas.80.8.2395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Parsons T. D., Lagrutta A., White R. E., Hartzell H. C. Regulation of Ca2+ current in frog ventricular cardiomyocytes by 5'-guanylylimidodiphosphate and acetylcholine. J Physiol. 1991 Jan;432:593–620. doi: 10.1113/jphysiol.1991.sp018403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pelzer S., Shuba Y. M., Asai T., Codina J., Birnbaumer L., McDonald T. F., Pelzer D. Membrane-delimited stimulation of heart cell calcium current by beta-adrenergic signal-transducing Gs protein. Am J Physiol. 1990 Jul;259(1 Pt 2):H264–H267. doi: 10.1152/ajpheart.1990.259.1.H264. [DOI] [PubMed] [Google Scholar]
  21. Rapp G., Güth K. A low cost high intensity flash device for photolysis experiments. Pflugers Arch. 1988 Feb;411(2):200–203. doi: 10.1007/BF00582315. [DOI] [PubMed] [Google Scholar]
  22. Richard S., Nerbonne J. M., Nargeot J., Lester H. A., Garnier D. Photochemically produced intracellular concentration jumps of cAMP mimic the effects of catecholamines on excitation-contraction coupling in frog atrial fibers. Pflugers Arch. 1985 Mar;403(3):312–317. doi: 10.1007/BF00583606. [DOI] [PubMed] [Google Scholar]
  23. Shuba Y. M., Hesslinger B., Trautwein W., McDonald T. F., Pelzer D. Whole-cell calcium current in guinea-pig ventricular myocytes dialysed with guanine nucleotides. J Physiol. 1990 May;424:205–228. doi: 10.1113/jphysiol.1990.sp018063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Trautwein W., Hescheler J. Regulation of cardiac L-type calcium current by phosphorylation and G proteins. Annu Rev Physiol. 1990;52:257–274. doi: 10.1146/annurev.ph.52.030190.001353. [DOI] [PubMed] [Google Scholar]
  25. White R. E., Hartzell H. C. Effects of intracellular free magnesium on calcium current in isolated cardiac myocytes. Science. 1988 Feb 12;239(4841 Pt 1):778–780. doi: 10.1126/science.2448878. [DOI] [PubMed] [Google Scholar]
  26. Yatani A., Brown A. M. Rapid beta-adrenergic modulation of cardiac calcium channel currents by a fast G protein pathway. Science. 1989 Jul 7;245(4913):71–74. doi: 10.1126/science.2544999. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES