Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1993 Mar 1;101(3):411–424. doi: 10.1085/jgp.101.3.411

Effects of sulfhydryl inhibitors on depolarizations-contraction coupling in frog skeletal muscle fibers

PMCID: PMC2216771  PMID: 8473850

Abstract

We have studied the effects of the sulfhydryl reagents on contractile responses, using either electrically stimulated single muscle fibers or short muscle fibers that were voltage-clamped with a two-microelectrode voltage-clamp technique that allows the fiber tension in response to membrane depolarization to be recorded. The sulfhydryl inhibitors para- chloromercuribenzoic acid (PCMB) and parahydroximercuriphenyl sulfonic acid (PHMPS), at concentrations from 0.5 to 2 mM, cause loss of the contractile ability; however, before this effect is completed, they change the fiber contractile behavior in a complex way. After relatively short exposure to the compounds, < 20 min, before the fibers lose their contractile capacity, secondary tension responses may appear after electrically elicited twitches or tetani. After losing their ability to contract in response to electrical stimulation, the fibers maintain their capacity to develop caffeine contractures, even after prolonged periods (120 min) of exposure to PHMPS. In fibers under voltage-clamp conditions, contractility is also lost; however, before this happens, long-lasting (i.e., minutes) episodes of spontaneous contractile activity may occur with the membrane polarized at -100 mV. After more prolonged exposure (> 30 min), the responses to membrane depolarization are reduced and eventually disappear. The agent DTT at a concentration of 2 mM appears to protect the fibers from the effects of PCMB and PHMPS. Furthermore, after loss of the contractile responses by the action of PCMB or PHMPS, addition of 2 mM DTT causes recovery of tension development capacity.

Full Text

The Full Text of this article is available as a PDF (969.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson J. J., Salama G. Critical sulfhydryls regulate calcium release from sarcoplasmic reticulum. J Bioenerg Biomembr. 1989 Apr;21(2):283–294. doi: 10.1007/BF00812073. [DOI] [PubMed] [Google Scholar]
  2. Abramson J. J., Trimm J. L., Weden L., Salama G. Heavy metals induce rapid calcium release from sarcoplasmic reticulum vesicles isolated from skeletal muscle. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1526–1530. doi: 10.1073/pnas.80.6.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brunder D. G., Dettbarn C., Palade P. Heavy metal-induced Ca2+ release from sarcoplasmic reticulum. J Biol Chem. 1988 Dec 15;263(35):18785–18792. [PubMed] [Google Scholar]
  4. Brunder D. G., Györke S., Dettbarn C., Palade P. Involvement of sarcoplasmic reticulum 'Ca2+ release channels' in excitation-contraction coupling in vertebrate skeletal muscle. J Physiol. 1992 Jan;445:759–778. doi: 10.1113/jphysiol.1992.sp018949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caputo C., Bezanilla F., Horowicz P. Depolarization-contraction coupling in short frog muscle fibers. A voltage clamp study. J Gen Physiol. 1984 Jul;84(1):133–154. doi: 10.1085/jgp.84.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caputo C., Bolaños P. Contractile inactivation in frog skeletal muscle fibers. The effects of low calcium, tetracaine, dantrolene, D-600, and nifedipine. J Gen Physiol. 1987 Mar;89(3):421–442. doi: 10.1085/jgp.89.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Caputo C. The effect of caffeine and tetracaine on the time course of potassium contractures of single muscle fibres. J Physiol. 1976 Feb;255(1):191–207. doi: 10.1113/jphysiol.1976.sp011275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fleischer S., Inui M. Biochemistry and biophysics of excitation-contraction coupling. Annu Rev Biophys Biophys Chem. 1989;18:333–364. doi: 10.1146/annurev.bb.18.060189.002001. [DOI] [PubMed] [Google Scholar]
  9. Gonzalez A., Bolaños P., Caputo C. Effects of sulfhydryl inhibitors on nonlinear membrane currents in frog skeletal muscle fibers. J Gen Physiol. 1993 Mar;101(3):425–451. doi: 10.1085/jgp.101.3.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gregoret L. M., Rader S. D., Fletterick R. J., Cohen F. E. Hydrogen bonds involving sulfur atoms in proteins. Proteins. 1991;9(2):99–107. doi: 10.1002/prot.340090204. [DOI] [PubMed] [Google Scholar]
  11. HODGKIN A. L., HOROWICZ P. Potassium contractures in single muscle fibres. J Physiol. 1960 Sep;153:386–403. doi: 10.1113/jphysiol.1960.sp006541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huneeus-Cox F., Fernandez H. L., Smith B. H. Effects of redox and sulfhydryl reagents on the bioelectric properties of the giant axon of the squid. Biophys J. 1966 Sep;6(5):675–689. doi: 10.1016/S0006-3495(66)86686-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kirsten E. B., Kuperman A. S. Effects of sulphydryl inhibitors on frog sartorius muscle: p-chloromercuribenzenesulphonic acid. Br J Pharmacol. 1970 Dec;40(4):814–826. doi: 10.1111/j.1476-5381.1970.tb10657.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lüttgau H. C., Oetliker H. The action of caffeine on the activation of the contractile mechanism in straited muscle fibres. J Physiol. 1968 Jan;194(1):51–74. doi: 10.1113/jphysiol.1968.sp008394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Oba T., Hotta K. Silver ion-induced tension development and membrane depolarization in frog skeletal muscle fibres. Pflugers Arch. 1985 Dec;405(4):354–359. doi: 10.1007/BF00595688. [DOI] [PubMed] [Google Scholar]
  16. Okamoto M., Kuperman A. S. Muscle contraction produced by sulphydryl inhibitors. Nature. 1966 Jun 4;210(5040):1062–1063. doi: 10.1038/2101062a0. [DOI] [PubMed] [Google Scholar]
  17. Palade P. Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. II. Releases involving a Ca2+-induced Ca2+ release channel. J Biol Chem. 1987 May 5;262(13):6142–6148. [PubMed] [Google Scholar]
  18. Pizarro G., Csernoch L., Uribe I., Rodríguez M., Ríos E. The relationship between Q gamma and Ca release from the sarcoplasmic reticulum in skeletal muscle. J Gen Physiol. 1991 May;97(5):913–947. doi: 10.1085/jgp.97.5.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ríos E., Pizarro G. Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiol Rev. 1991 Jul;71(3):849–908. doi: 10.1152/physrev.1991.71.3.849. [DOI] [PubMed] [Google Scholar]
  20. SMITH H. M. Effects of sulfhydryl blockade on axonal function. J Cell Physiol. 1958 Apr;51(2):161–171. doi: 10.1002/jcp.1030510203. [DOI] [PubMed] [Google Scholar]
  21. Wilson G. J., dos Remedios C. G., Stephenson D. G., Williams D. A. Effects of sulphydryl modification on skinned rat skeletal muscle fibres using 5,5'-dithiobis(2-nitrobenzoic acid). J Physiol. 1991 Jun;437:409–430. doi: 10.1113/jphysiol.1991.sp018603. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES