Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1993 May 1;101(5):715–732. doi: 10.1085/jgp.101.5.715

Kinetics of residual chloride transport in human red blood cells after maximum covalent 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid binding

PMCID: PMC2216779  PMID: 8393066

Abstract

Irreversible inhibition, 99.8% of control values for chloride transport in human red blood cells, was obtained by well-established methods of maximum covalent binding of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The kinetics of the residual chloride transport (0.2%, 106 pmol.cm-2 x s-1) at 38 degrees C, pH 7.2) was studied by means of 36Cl- efflux. The outside apparent affinity, expressed by Ko1/2,c, was 34 mM, as determined by substituting external KCl by sucrose. The residual flux was reversibly inhibited by a reexposure to DIDS, and by 4,4'- dinitrostilbene-2,2'-disulfonate (DNDS), phloretin, salicylate, and alpha-bromo-4-hydroxy-3,5-dinitroacetophenone (Killer III) (Borders, C. L., Jr., D. M. Perez, M. W. Lafferty, A. J. Kondow, J. Brahm, M. B. Fenderson, G. L. Breisford, and V. B. Pett. 1989. Bioorganic Chemistry. 17:96-107), to approximately 0.001% of control cells, which is a flux as low as in lipid bilayers. The reversible DIDS inhibition of the residual chloride flux depended on the extracellular chloride concentration, but was not purely competitive. The half-inhibition concentrations at [Cl(o)] = 150 mM in control cells (Ki,o) and covalently DIDS-treated cells (Ki,c) were: DIDS, Ki,c = 73 nM; DNDS, Ki,o = 6.3 microM, Ki,c = 22 microM; phloretin, Ki,o = 19 microM, Ki,c = 17 microM; salicylate, Ki,o = 4 mM, Ki,c = 8 mM; Killer III, Ki,o = 10 microM, Ki,c = 10 microM.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRITTON H. G. PERMEABILITY OF THE HUMAN RED CELL TO LABELLED GLUCOSE. J Physiol. 1964 Jan;170:1–20. doi: 10.1113/jphysiol.1964.sp007310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennekou P., Stampe P. The effect of ATP, intracellular calcium and the anion exchange inhibitor DIDS on conductive anion fluxes across the human red cell membrane. Biochim Biophys Acta. 1988 Jul 7;942(1):179–185. doi: 10.1016/0005-2736(88)90287-8. [DOI] [PubMed] [Google Scholar]
  3. Brahm J. Diffusional water permeability of human erythrocytes and their ghosts. J Gen Physiol. 1982 May;79(5):791–819. doi: 10.1085/jgp.79.5.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brahm J. Temperature-dependent changes of chloride transport kinetics in human red cells. J Gen Physiol. 1977 Sep;70(3):283–306. doi: 10.1085/jgp.70.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brahm J. Transport measurement of anions, nonelectrolytes, and water in red blood cell and ghost systems. Methods Enzymol. 1989;173:160–175. doi: 10.1016/s0076-6879(89)73011-1. [DOI] [PubMed] [Google Scholar]
  6. Brahm J., Wimberley P. D. Chloride and bicarbonate transport in fetal red cells. J Physiol. 1989 Dec;419:141–156. doi: 10.1113/jphysiol.1989.sp017865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cabantchik Z. I., Rothstein A. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J Membr Biol. 1972 Dec 29;10(3):311–330. doi: 10.1007/BF01867863. [DOI] [PubMed] [Google Scholar]
  8. Dalmark M., Wieth J. O. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. J Physiol. 1972 Aug;224(3):583–610. doi: 10.1113/jphysiol.1972.sp009914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dix J. A., Verkman A. S., Solomon A. K. Binding of chloride and a disulfonic stilbene transport inhibitor to red cell band 3. J Membr Biol. 1986;89(3):211–223. doi: 10.1007/BF01870665. [DOI] [PubMed] [Google Scholar]
  10. Fröhlich O., Gunn R. B. Erythrocyte anion transport: the kinetics of a single-site obligatory exchange system. Biochim Biophys Acta. 1986 Sep 22;864(2):169–194. doi: 10.1016/0304-4157(86)90010-9. [DOI] [PubMed] [Google Scholar]
  11. Funder J., Tosteson D. C., Wieth J. O. Effects of bicarbonate on lithium transport in human red cells. J Gen Physiol. 1978 Jun;71(6):721–746. doi: 10.1085/jgp.71.6.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gasbjerg P. K., Brahm J. Kinetics of bicarbonate and chloride transport in human red cell membranes. J Gen Physiol. 1991 Feb;97(2):321–349. doi: 10.1085/jgp.97.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gutknecht J., Graves J. S., Tosteson D. C. Electrically silent anion transport through lipid bilayer membranes containing a long-chain secondary amine. J Gen Physiol. 1978 Mar;71(3):269–284. doi: 10.1085/jgp.71.3.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hunter M. J. Human erythrocyte anion permeabilities measured under conditions of net charge transfer. J Physiol. 1977 Jun;268(1):35–49. doi: 10.1113/jphysiol.1977.sp011845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Janas T., Bjerrum P. J., Brahm J., Wieth J. O. Kinetics of reversible DIDS inhibition of chloride self exchange in human erythrocytes. Am J Physiol. 1989 Oct;257(4 Pt 1):C601–C606. doi: 10.1152/ajpcell.1989.257.4.C601. [DOI] [PubMed] [Google Scholar]
  16. Knauf P. A., Fuhrmann G. F., Rothstein S., Rothstein A. The relationship between anion exchange and net anion flow across the human red blood cell membrane. J Gen Physiol. 1977 Mar;69(3):363–386. doi: 10.1085/jgp.69.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lassen U. V., Pape L., Vestergaard-Bogind B. Chloride conductance of the amphiuma red cell membrane. J Membr Biol. 1978 Feb 6;39(1):27–48. doi: 10.1007/BF01872753. [DOI] [PubMed] [Google Scholar]
  18. Lepke S., Fasold H., Pring M., Passow H. A study of the relationship between inhibition of anion exchange and binding to the red blood cell membrane of 4,4'-diisothiocyano stilbene-2,2'-disulfonic acid (DIDS) and its dihydro derivative (H2DIDS). J Membr Biol. 1976 Oct 20;29(1-2):147–177. doi: 10.1007/BF01868957. [DOI] [PubMed] [Google Scholar]
  19. Rao A., Martin P., Reithmeier R. A., Cantley L. C. Location of the stilbenedisulfonate binding site of the human erythrocyte anion-exchange system by resonance energy transfer. Biochemistry. 1979 Oct 16;18(21):4505–4516. doi: 10.1021/bi00588a008. [DOI] [PubMed] [Google Scholar]
  20. Shami Y., Rothstein A., Knauf P. A. Identification of the Cl- transport site of human red blood cells by a kinetic analysis of the inhibitory effects of a chemical probe. Biochim Biophys Acta. 1978 Apr 4;508(2):357–363. doi: 10.1016/0005-2736(78)90337-1. [DOI] [PubMed] [Google Scholar]
  21. Tosteson M. T., Wieth J. O. Tributyltin-mediated exchange diffusion of halides in lipid bilayers. J Gen Physiol. 1979 Jun;73(6):789–800. doi: 10.1085/jgp.73.6.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Toyoshima Y., Thompson T. E. Chloride flux in bilayer membranes: chloride permeability in aqueous dispersions of single-walled, bilayer vesicles. Biochemistry. 1975 Apr 8;14(7):1525–1531. doi: 10.1021/bi00678a028. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES