Abstract
Whole-cell voltage clamp recordings were made from photoreceptors of dissociated Drosophila ommatidia under conditions when the light- sensitive channels activate spontaneously, generating a "rundown current" (RDC). The Ca2+ and voltage dependence of the RDC was investigated by applying voltage steps (+80 to -100 mV) at a variety of extracellular Ca2+ concentrations (0-10 mM). In Ca(2+)-free Ringer large currents are maintained tonically throughout 50-ms-long voltage steps. In the presence of external Ca2+, hyperpolarizing steps elicit transient currents which inactivate increasingly rapidly as Ca2+ is raised. On depolarization inactivation is removed with a time constant of approximately 10 ms at +80 mV. The Ca(2+)-dependent inactivation is suppressed by 10 mM internal BAPTA, suggesting it requires Ca2+ influx. The inactivation is absent in the trp mutant, which lacks one class of Ca(2+)-selective, light-sensitive channel, but appears unaffected by the inaC mutant which lacks an eye-specific protein kinase C. Hyperpolarizing voltage steps applied during light responses in wild- type (WT) flies before rundown induce a rapid transient facilitation followed by slower inhibition. Both processes accelerate as Ca2+ is raised, but the time constant of inhibition (12 ms with 1.5 mM external Ca2+ at -60 mV) is approximately 10 times slower than that of the RDC inactivation. The Ca(2+)-mediated inhibition of the light response recovers in approximately 50-100 ms on depolarization, recovery being accelerated with higher external Ca2+. The Ca2+ and voltage dependence of the light-induced current is virtually eliminated in the trp mutant. In inaC, hyperpolarizing voltage steps induced transient currents which appeared similar to those in WT during early phases of the light response. However, 200 ms after the onset of light, the currents induced by voltage steps inactivated more rapidly with time constants similar to those of the RDC. It is suggested that the Ca(2+)-dependent inactivation of the light-sensitive channels first occurs at some concentration of Ca2+ not normally reached during the moderate illumination regimes used, but that the defect in inaC allows this level to be reached.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berridge M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987;56:159–193. doi: 10.1146/annurev.bi.56.070187.001111. [DOI] [PubMed] [Google Scholar]
- Bezprozvanny I., Watras J., Ehrlich B. E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 1991 Jun 27;351(6329):751–754. doi: 10.1038/351751a0. [DOI] [PubMed] [Google Scholar]
- Brown H. M., Rydqvist B. Dimethyl sulfoxide elevates intracellular Ca2+ and mimics effects of increased light intensity in a photoreceptor. Pflugers Arch. 1990 Jan;415(4):395–398. doi: 10.1007/BF00373615. [DOI] [PubMed] [Google Scholar]
- Brown J. E., Blinks J. R. Changes in intracellular free calcium concentration during illumination of invertebrate photoreceptors. Detection with aequorin. J Gen Physiol. 1974 Dec;64(6):643–665. doi: 10.1085/jgp.64.6.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown J. E., Rubin L. J., Ghalayini A. J., Tarver A. P., Irvine R. F., Berridge M. J., Anderson R. E. myo-Inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature. 1984 Sep 13;311(5982):160–163. doi: 10.1038/311160a0. [DOI] [PubMed] [Google Scholar]
- Cosens D. J., Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature. 1969 Oct 18;224(5216):285–287. doi: 10.1038/224285a0. [DOI] [PubMed] [Google Scholar]
- Deckert A., Nagy K., Helrich C. S., Stieve H. Three components in the light-induced current of the Limulus ventral photoreceptor. J Physiol. 1992;453:69–96. doi: 10.1113/jphysiol.1992.sp019219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deckert A., Stieve H. Electrogenic Na(+)-Ca2+ exchanger, the link between intra- and extracellular calcium in the Limulus ventral photoreceptor. J Physiol. 1991 Feb;433:467–482. doi: 10.1113/jphysiol.1991.sp018438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devary O., Heichal O., Blumenfeld A., Cassel D., Suss E., Barash S., Rubinstein C. T., Minke B., Selinger Z. Coupling of photoexcited rhodopsin to inositol phospholipid hydrolysis in fly photoreceptors. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6939–6943. doi: 10.1073/pnas.84.19.6939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eckert R., Chad J. E. Inactivation of Ca channels. Prog Biophys Mol Biol. 1984;44(3):215–267. doi: 10.1016/0079-6107(84)90009-9. [DOI] [PubMed] [Google Scholar]
- Fein A., Payne R., Corson D. W., Berridge M. J., Irvine R. F. Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate. Nature. 1984 Sep 13;311(5982):157–160. doi: 10.1038/311157a0. [DOI] [PubMed] [Google Scholar]
- Finch E. A., Turner T. J., Goldin S. M. Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science. 1991 Apr 19;252(5004):443–446. doi: 10.1126/science.2017683. [DOI] [PubMed] [Google Scholar]
- Gutnick M. J., Lux H. D., Swandulla D., Zucker H. Voltage-dependent and calcium-dependent inactivation of calcium channel current in identified snail neurones. J Physiol. 1989 May;412:197–220. doi: 10.1113/jphysiol.1989.sp017611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardie R. C., Minke B. Spontaneous activation of light-sensitive channels in Drosophila photoreceptors. J Gen Physiol. 1994 Mar;103(3):389–407. doi: 10.1085/jgp.103.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardie R. C., Minke B. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron. 1992 Apr;8(4):643–651. doi: 10.1016/0896-6273(92)90086-s. [DOI] [PubMed] [Google Scholar]
- Hardie R. C., Peretz A., Pollock J. A., Minke B. Ca2+ limits the development of the light response in Drosophila photoreceptors. Proc Biol Sci. 1993 Jun 22;252(1335):223–229. doi: 10.1098/rspb.1993.0069. [DOI] [PubMed] [Google Scholar]
- Hardie R. C., Peretz A., Suss-Toby E., Rom-Glas A., Bishop S. A., Selinger Z., Minke B. Protein kinase C is required for light adaptation in Drosophila photoreceptors. Nature. 1993 Jun 17;363(6430):634–637. doi: 10.1038/363634a0. [DOI] [PubMed] [Google Scholar]
- Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
- Imredy J. P., Yue D. T. Submicroscopic Ca2+ diffusion mediates inhibitory coupling between individual Ca2+ channels. Neuron. 1992 Aug;9(2):197–207. doi: 10.1016/0896-6273(92)90159-b. [DOI] [PubMed] [Google Scholar]
- Johnson E. C., Bacigalupo J. Spontaneous activity of the light-dependent channel irreversibly induced in excised patches from Limulus ventral photoreceptors. J Membr Biol. 1992 Oct;130(1):33–47. doi: 10.1007/BF00233737. [DOI] [PubMed] [Google Scholar]
- Lisman J. E., Brown J. E. The effects of intracellular iontophoretic injection of calcium and sodium ions on the light response of Limulus ventral photoreceptors. J Gen Physiol. 1972 Jun;59(6):701–719. doi: 10.1085/jgp.59.6.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minke B. Light-induced reduction in excitation efficiency in the trp mutant of Drosophila. J Gen Physiol. 1982 Mar;79(3):361–385. doi: 10.1085/jgp.79.3.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minke B., Tsacopoulos M. Light induced sodium dependent accumulation of calcium and potassium in the extracellular space of bee retina. Vision Res. 1986;26(5):679–690. doi: 10.1016/0042-6989(86)90082-9. [DOI] [PubMed] [Google Scholar]
- Montell C., Rubin G. M. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron. 1989 Apr;2(4):1313–1323. doi: 10.1016/0896-6273(89)90069-x. [DOI] [PubMed] [Google Scholar]
- Nagy K. Biophysical processes in invertebrate photoreceptors: recent progress and a critical overview based on Limulus photoreceptors. Q Rev Biophys. 1991 May;24(2):165–226. doi: 10.1017/s0033583500003401. [DOI] [PubMed] [Google Scholar]
- Nasi E., Gomez M. P. Light-activated ion channels in solitary photoreceptors of the scallop Pecten irradians. J Gen Physiol. 1992 May;99(5):747–769. doi: 10.1085/jgp.99.5.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nasi E. Two light-dependent conductances in Lima rhabdomeric photoreceptors. J Gen Physiol. 1991 Jan;97(1):55–72. doi: 10.1085/jgp.97.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
- Payne R., Corson D. W., Fein A. Pressure injection of calcium both excites and adapts Limulus ventral photoreceptors. J Gen Physiol. 1986 Jul;88(1):107–126. doi: 10.1085/jgp.88.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Payne R., Fein A. The initial response of Limulus ventral photoreceptors to bright flashes. Released calcium as a synergist to excitation. J Gen Physiol. 1986 Feb;87(2):243–269. doi: 10.1085/jgp.87.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Payne R., Flores T. M., Fein A. Feedback inhibition by calcium limits the release of calcium by inositol trisphosphate in Limulus ventral photoreceptors. Neuron. 1990 Apr;4(4):547–555. doi: 10.1016/0896-6273(90)90112-s. [DOI] [PubMed] [Google Scholar]
- Payne R., Walz B., Levy S., Fein A. The localization of calcium release by inositol trisphosphate in Limulus photoreceptors and its control by negative feedback. Philos Trans R Soc Lond B Biol Sci. 1988 Jul 26;320(1199):359–379. doi: 10.1098/rstb.1988.0082. [DOI] [PubMed] [Google Scholar]
- Phillips A. M., Bull A., Kelly L. E. Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron. 1992 Apr;8(4):631–642. doi: 10.1016/0896-6273(92)90085-r. [DOI] [PubMed] [Google Scholar]
- Ranganathan R., Harris G. L., Stevens C. F., Zuker C. S. A Drosophila mutant defective in extracellular calcium-dependent photoreceptor deactivation and rapid desensitization. Nature. 1991 Nov 21;354(6350):230–232. doi: 10.1038/354230a0. [DOI] [PubMed] [Google Scholar]
- Smith D. P., Ranganathan R., Hardy R. W., Marx J., Tsuchida T., Zuker C. S. Photoreceptor deactivation and retinal degeneration mediated by a photoreceptor-specific protein kinase C. Science. 1991 Dec 6;254(5037):1478–1484. doi: 10.1126/science.1962207. [DOI] [PubMed] [Google Scholar]
- Werner U., Suss-Toby E., Rom A., Minke B. Calcium is necessary for light excitation in barnacle photoreceptors. J Comp Physiol A. 1992 Apr;170(4):427–434. doi: 10.1007/BF00191459. [DOI] [PubMed] [Google Scholar]
- Wong F., Knight B. W. Adapting-bump model for eccentric cells of Limulus. J Gen Physiol. 1980 Nov;76(5):539–557. doi: 10.1085/jgp.76.5.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yau K. W., Baylor D. A. Cyclic GMP-activated conductance of retinal photoreceptor cells. Annu Rev Neurosci. 1989;12:289–327. doi: 10.1146/annurev.ne.12.030189.001445. [DOI] [PubMed] [Google Scholar]
- Zufall F., Shepherd G. M., Firestein S. Inhibition of the olfactory cyclic nucleotide gated ion channel by intracellular calcium. Proc Biol Sci. 1991 Dec 23;246(1317):225–230. doi: 10.1098/rspb.1991.0148. [DOI] [PubMed] [Google Scholar]