Abstract
In Drosophila photoreceptors light induces phosphoinositide hydrolysis and activation of Ca(2+)-permeable plasma membrane channels, one class of which is believed to be encoded by the trp gene. We have investigated the properties of the light-sensitive channels under conditions where they are activated independently of the transduction cascade. Whole-cell voltage clamp recordings were made from photoreceptors in a preparation of dissociated Drosophila ommatidia. Within a few minutes of establishing the whole-cell configuration, there is a massive spontaneous activation of cation-permeable channels. When clamped near resting potential, this "rundown current" (RDC) accelerates over several seconds, peaks, and then relaxes to a steady- state which lasts indefinitely (many minutes). The RDC is invariably associated with a reduction in sensitivity to light by at least 100- fold. The RDC has a similar absolute magnitude, reversal potential, and voltage dependence to the light-induced current, suggesting that it is mediated by the same channels. The RDC is almost completely (> or = 98%) blocked by La3+ (10-20 microM) and is absent, or reduced and altered in the trp mutant (which lacks a La(3+)-sensitive light- dependent Ca2+ channel), suggesting that it is largely mediated by the trp-dependent channels. Power spectra of the steady-state noise in the RDC can be fitted by simple Lorentzian functions consistent with random channel openings. The variance/mean ratio of the RDC noise suggests the underlying events (channels) have conductances of approximately 1.5-4.5 pS in wild-type (WT), but 12-30 pS in trp photoreceptors. Nevertheless, the power spectra of RDC noise in WT and trp are indistinguishable, in both cases being fitted by the sum of two Lorentzians with a major time constant (effective "mean channel open time") of 1-2 ms and a minor component at higher frequencies (approximately 0.2 ms). This implies that the noise in the WT RDC may actually be dominated by non-trp- dependent channels and that the trp-dependent channels may be of even lower unit conductance.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Attwell D. The Sharpey-Schafer lecture. Ion channels and signal processing in the outer retina. Q J Exp Physiol. 1986 Oct;71(4):497–536. [PubMed] [Google Scholar]
- Bainbridge S. P., Bownes M. Staging the metamorphosis of Drosophila melanogaster. J Embryol Exp Morphol. 1981 Dec;66:57–80. [PubMed] [Google Scholar]
- Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
- Bezprozvanny I., Watras J., Ehrlich B. E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 1991 Jun 27;351(6329):751–754. doi: 10.1038/351751a0. [DOI] [PubMed] [Google Scholar]
- Bloomquist B. T., Shortridge R. D., Schneuwly S., Perdew M., Montell C., Steller H., Rubin G., Pak W. L. Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell. 1988 Aug 26;54(5):723–733. doi: 10.1016/s0092-8674(88)80017-5. [DOI] [PubMed] [Google Scholar]
- Brown J. E., Rubin L. J., Ghalayini A. J., Tarver A. P., Irvine R. F., Berridge M. J., Anderson R. E. myo-Inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature. 1984 Sep 13;311(5982):160–163. doi: 10.1038/311160a0. [DOI] [PubMed] [Google Scholar]
- Colquhoun D., Hawkes A. G. Relaxation and fluctuations of membrane currents that flow through drug-operated channels. Proc R Soc Lond B Biol Sci. 1977 Nov 14;199(1135):231–262. doi: 10.1098/rspb.1977.0137. [DOI] [PubMed] [Google Scholar]
- Cosens D. J., Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature. 1969 Oct 18;224(5216):285–287. doi: 10.1038/224285a0. [DOI] [PubMed] [Google Scholar]
- Deckert A., Nagy K., Helrich C. S., Stieve H. Three components in the light-induced current of the Limulus ventral photoreceptor. J Physiol. 1992;453:69–96. doi: 10.1113/jphysiol.1992.sp019219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deckert A., Stieve H. Electrogenic Na(+)-Ca2+ exchanger, the link between intra- and extracellular calcium in the Limulus ventral photoreceptor. J Physiol. 1991 Feb;433:467–482. doi: 10.1113/jphysiol.1991.sp018438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devary O., Heichal O., Blumenfeld A., Cassel D., Suss E., Barash S., Rubinstein C. T., Minke B., Selinger Z. Coupling of photoexcited rhodopsin to inositol phospholipid hydrolysis in fly photoreceptors. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6939–6943. doi: 10.1073/pnas.84.19.6939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fein A., Payne R., Corson D. W., Berridge M. J., Irvine R. F. Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate. Nature. 1984 Sep 13;311(5982):157–160. doi: 10.1038/311157a0. [DOI] [PubMed] [Google Scholar]
- Finch E. A., Turner T. J., Goldin S. M. Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science. 1991 Apr 19;252(5004):443–446. doi: 10.1126/science.2017683. [DOI] [PubMed] [Google Scholar]
- Hardie R. C., Minke B. Calcium-dependent inactivation of light-sensitive channels in Drosophila photoreceptors. J Gen Physiol. 1994 Mar;103(3):409–427. doi: 10.1085/jgp.103.3.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardie R. C., Minke B. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron. 1992 Apr;8(4):643–651. doi: 10.1016/0896-6273(92)90086-s. [DOI] [PubMed] [Google Scholar]
- Hardie R. C. Voltage-sensitive potassium channels in Drosophila photoreceptors. J Neurosci. 1991 Oct;11(10):3079–3095. doi: 10.1523/JNEUROSCI.11-10-03079.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hochstrate P. Lanthanum mimicks the trp photoreceptor mutant of Drosophila in the blowfly Calliphora. J Comp Physiol A. 1989 Dec;166(2):179–187. doi: 10.1007/BF00193462. [DOI] [PubMed] [Google Scholar]
- Hoth M., Penner R. Calcium release-activated calcium current in rat mast cells. J Physiol. 1993 Jun;465:359–386. doi: 10.1113/jphysiol.1993.sp019681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
- Irvine R. F. Inositol phosphates and Ca2+ entry: toward a proliferation or a simplification? FASEB J. 1992 Sep;6(12):3085–3091. doi: 10.1096/fasebj.6.12.1325932. [DOI] [PubMed] [Google Scholar]
- Irvine R. F. Inositol tetrakisphosphate as a second messenger: confusions, contradictions, and a potential resolution. Bioessays. 1991 Aug;13(8):419–427. doi: 10.1002/bies.950130810. [DOI] [PubMed] [Google Scholar]
- Lückhoff A., Clapham D. E. Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca(2+)-permeable channel. Nature. 1992 Jan 23;355(6358):356–358. doi: 10.1038/355356a0. [DOI] [PubMed] [Google Scholar]
- Minke B., Selinger Z. The inositol-lipid pathway is necessary for light excitation in fly photoreceptors. Soc Gen Physiol Ser. 1992;47:201–217. [PubMed] [Google Scholar]
- Minke B., Wu C., Pak W. L. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature. 1975 Nov 6;258(5530):84–87. doi: 10.1038/258084a0. [DOI] [PubMed] [Google Scholar]
- Montell C., Rubin G. M. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron. 1989 Apr;2(4):1313–1323. doi: 10.1016/0896-6273(89)90069-x. [DOI] [PubMed] [Google Scholar]
- Nagy K. Biophysical processes in invertebrate photoreceptors: recent progress and a critical overview based on Limulus photoreceptors. Q Rev Biophys. 1991 May;24(2):165–226. doi: 10.1017/s0033583500003401. [DOI] [PubMed] [Google Scholar]
- Nasi E., Gomez M. P. Light-activated ion channels in solitary photoreceptors of the scallop Pecten irradians. J Gen Physiol. 1992 May;99(5):747–769. doi: 10.1085/jgp.99.5.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nasi E. Two light-dependent conductances in Lima rhabdomeric photoreceptors. J Gen Physiol. 1991 Jan;97(1):55–72. doi: 10.1085/jgp.97.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Tousa J. E., Baehr W., Martin R. L., Hirsh J., Pak W. L., Applebury M. L. The Drosophila ninaE gene encodes an opsin. Cell. 1985 Apr;40(4):839–850. doi: 10.1016/0092-8674(85)90343-5. [DOI] [PubMed] [Google Scholar]
- Pak W. L., Grossfield J., White N. V. Nonphototactic mutants in a study of vision of Drosophila. Nature. 1969 Apr 26;222(5191):351–354. doi: 10.1038/222351a0. [DOI] [PubMed] [Google Scholar]
- Partridge L. D., Swandulla D. Calcium-activated non-specific cation channels. Trends Neurosci. 1988 Feb;11(2):69–72. doi: 10.1016/0166-2236(88)90167-1. [DOI] [PubMed] [Google Scholar]
- Payne R., Walz B., Levy S., Fein A. The localization of calcium release by inositol trisphosphate in Limulus photoreceptors and its control by negative feedback. Philos Trans R Soc Lond B Biol Sci. 1988 Jul 26;320(1199):359–379. doi: 10.1098/rstb.1988.0082. [DOI] [PubMed] [Google Scholar]
- Phillips A. M., Bull A., Kelly L. E. Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron. 1992 Apr;8(4):631–642. doi: 10.1016/0896-6273(92)90085-r. [DOI] [PubMed] [Google Scholar]
- Putney J. W., Jr Inositol phosphates and calcium entry. Adv Second Messenger Phosphoprotein Res. 1992;26:143–160. [PubMed] [Google Scholar]
- Ranganathan R., Harris G. L., Stevens C. F., Zuker C. S. A Drosophila mutant defective in extracellular calcium-dependent photoreceptor deactivation and rapid desensitization. Nature. 1991 Nov 21;354(6350):230–232. doi: 10.1038/354230a0. [DOI] [PubMed] [Google Scholar]
- Suss-Toby E., Selinger Z., Minke B. Lanthanum reduces the excitation efficiency in fly photoreceptors. J Gen Physiol. 1991 Oct;98(4):849–868. doi: 10.1085/jgp.98.4.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toyoshima S., Matsumoto N., Wang P., Inoue H., Yoshioka T., Hotta Y., Osawa T. Purification and partial amino acid sequences of phosphoinositide-specific phospholipase C of Drosophila eye. J Biol Chem. 1990 Sep 5;265(25):14842–14848. [PubMed] [Google Scholar]
- Wong F., Knight B. W. Adapting-bump model for eccentric cells of Limulus. J Gen Physiol. 1980 Nov;76(5):539–557. doi: 10.1085/jgp.76.5.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong F., Schaefer E. L., Roop B. C., LaMendola J. N., Johnson-Seaton D., Shao D. Proper function of the Drosophila trp gene product during pupal development is important for normal visual transduction in the adult. Neuron. 1989 Jul;3(1):81–94. doi: 10.1016/0896-6273(89)90117-7. [DOI] [PubMed] [Google Scholar]
- Yau K. W., Baylor D. A. Cyclic GMP-activated conductance of retinal photoreceptor cells. Annu Rev Neurosci. 1989;12:289–327. doi: 10.1146/annurev.ne.12.030189.001445. [DOI] [PubMed] [Google Scholar]
- Yoshioka T., Inoue H., Hotta Y. Absence of phosphatidylinositol phosphodiesterase in the head of a Drosophila visual mutant, norpA (no receptor potential A). J Biochem. 1985 Apr;97(4):1251–1254. doi: 10.1093/oxfordjournals.jbchem.a135171. [DOI] [PubMed] [Google Scholar]
- Zuker C. S., Cowman A. F., Rubin G. M. Isolation and structure of a rhodopsin gene from D. melanogaster. Cell. 1985 Apr;40(4):851–858. doi: 10.1016/0092-8674(85)90344-7. [DOI] [PubMed] [Google Scholar]