Abstract
Regulation of the cAMP-activated apical membrane Cl- conductance (GaCl) in Necturus gallbladder (NGB) epithelial cells was investigated with intracellular-microelectrode techniques. GaCl was increased by exposure to 8-Br-cAMP, theophylline or forskolin. Neither 8-Br-cGMP nor elevation of intracellular [Ca2+] using ionomycin had effects on GaCl or interfered with activation of GaCl by forskolin. N-(2- [methylamino]ethyl)-5-isoquinolinesulfonamide (H8), an inhibitor of cAMP-dependent protein kinase (PKA), slowed but did not prevent the GaCl response to 8-Br-cAMP. Phorbol 12-myristate 13-acetate (PMA), which activates protein kinase C (PKC), stimulated GaCl but had no effects on intracellular [cAMP]. GaCl was unaffected by 4 alpha- phorbol, a PMA analog which does not activate PKC. Okadaic acid (OA), an inhibitor of protein phosphatases (PP) types 1 and 2A, slowed the activation of GaCl by 8-Br-cAMP, hastened the return of GaCl to basal values following removal of 8-Br-cAMP, and significantly reduced the elevation in intracellular [cAMP] produced by forskolin. OA had no effects on the GaCl changes elicited by theophylline. We conclude that: (a) NGB GaCl can be activated by PKA-mediated phosphorylation of apical membrane Cl- channels or a regulatory protein, (b) GaCl can also be activated via PKC, by a cAMP-independent mechanism, (c) OA-sensitive PP are not required for inactivation of GaCl; OA appears to stimulate phosphodiesterase, which lowers intracellular [cAMP] and affects GaCl activation, and (d) the apical membrane of NGB epithelium lacks a Ca(2+)-activated Cl- conductance.
Full Text
The Full Text of this article is available as a PDF (946.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allert N., Leipziger J., Greger R. cAMP and Ca2+ act co-operatively on the Cl- conductance of HT29 cells. Pflugers Arch. 1992 Jul;421(4):403–405. doi: 10.1007/BF00374233. [DOI] [PubMed] [Google Scholar]
- Altenberg G. A., Stoddard J. S., Reuss L. Electrophysiological effects of basolateral [Na+] in Necturus gallbladder epithelium. J Gen Physiol. 1992 Feb;99(2):241–262. doi: 10.1085/jgp.99.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Altenberg G., Copello J., Cotton C., Dawson K., Segal Y., Wehner F., Reuss L. Electrophysiological methods for studying ion and water transport in Necturus gall bladder epithelium. Methods Enzymol. 1990;192:650–683. doi: 10.1016/0076-6879(90)92101-i. [DOI] [PubMed] [Google Scholar]
- Anderson M. P., Welsh M. J. Calcium and cAMP activate different chloride channels in the apical membrane of normal and cystic fibrosis epithelia. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6003–6007. doi: 10.1073/pnas.88.14.6003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bajnath R. B., van Hoeve M. H., de Jonge H. R., Groot J. A. Regulation of apical Cl- conductance and basolateral K+ conductances by phorbol esters in HT-29cl.19A cells. Am J Physiol. 1992 Oct;263(4 Pt 1):C759–C766. doi: 10.1152/ajpcell.1992.263.4.C759. [DOI] [PubMed] [Google Scholar]
- Berger H. A., Travis S. M., Welsh M. J. Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by specific protein kinases and protein phosphatases. J Biol Chem. 1993 Jan 25;268(3):2037–2047. [PubMed] [Google Scholar]
- Copello J., Heming T. A., Segal Y., Reuss L. cAMP-activated apical membrane chloride channels in Necturus gallbladder epithelium. Conductance, selectivity, and block. J Gen Physiol. 1993 Aug;102(2):177–199. doi: 10.1085/jgp.102.2.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cotton C. U., Reuss L. Effects of changes in mucosal solution Cl- or K+ concentration on cell water volume of Necturus gallbladder epithelium. J Gen Physiol. 1991 Apr;97(4):667–686. doi: 10.1085/jgp.97.4.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans F. J., Parker P. J., Olivier A. R., Thomas S., Ryves W. J., Evans A. T., Gordge P., Sharma P. Phorbol ester activation of the isotypes of protein kinase C from bovine and rat brain. Biochem Soc Trans. 1991 Apr;19(2):397–402. doi: 10.1042/bst0190397. [DOI] [PubMed] [Google Scholar]
- Finn A. L., Gaido M. L., Dillard M., Brautigan D. L. Regulation of an epithelial chloride channel by direct phosphorylation and dephosphorylation. Am J Physiol. 1992 Jul;263(1 Pt 1):C172–C175. doi: 10.1152/ajpcell.1992.263.1.C172. [DOI] [PubMed] [Google Scholar]
- Fuller C. M., Benos D. J. CFTR! Am J Physiol. 1992 Aug;263(2 Pt 1):C267–C286. doi: 10.1152/ajpcell.1992.263.2.C267. [DOI] [PubMed] [Google Scholar]
- Garvin J. L., Spring K. R. Regulation of apical membrane ion transport in Necturus gallbladder. Am J Physiol. 1992 Jul;263(1 Pt 1):C187–C193. doi: 10.1152/ajpcell.1992.263.1.C187. [DOI] [PubMed] [Google Scholar]
- Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
- Hwang T. C., Horie M., Gadsby D. C. Functionally distinct phospho-forms underlie incremental activation of protein kinase-regulated Cl- conductance in mammalian heart. J Gen Physiol. 1993 May;101(5):629–650. doi: 10.1085/jgp.101.5.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishihara H., Martin B. L., Brautigan D. L., Karaki H., Ozaki H., Kato Y., Fusetani N., Watabe S., Hashimoto K., Uemura D. Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem Biophys Res Commun. 1989 Mar 31;159(3):871–877. doi: 10.1016/0006-291x(89)92189-x. [DOI] [PubMed] [Google Scholar]
- Jennings M. L., Schulz R. K. Okadaic acid inhibition of KCl cotransport. Evidence that protein dephosphorylation is necessary for activation of transport by either cell swelling or N-ethylmaleimide. J Gen Physiol. 1991 Apr;97(4):799–817. doi: 10.1085/jgp.97.4.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- La B. Q., Carosi S. L., Valentich J., Shenolikar S., Sansom S. C. Regulation of epithelial chloride channels by protein phosphatase. Am J Physiol. 1991 Jun;260(6 Pt 1):C1217–C1223. doi: 10.1152/ajpcell.1991.260.6.C1217. [DOI] [PubMed] [Google Scholar]
- Lin M., Nairn A. C., Guggino S. E. cGMP-dependent protein kinase regulation of a chloride channel in T84 cells. Am J Physiol. 1992 May;262(5 Pt 1):C1304–C1312. doi: 10.1152/ajpcell.1992.262.5.C1304. [DOI] [PubMed] [Google Scholar]
- Naghshineh S., Noguchi M., Huang K. P., Londos C. Activation of adipocyte adenylate cyclase by protein kinase C. J Biol Chem. 1986 Nov 5;261(31):14534–14538. [PubMed] [Google Scholar]
- Petersen K. U., Reuss L. Cyclic AMP-induced chloride permeability in the apical membrane of Necturus gallbladder epithelium. J Gen Physiol. 1983 May;81(5):705–729. doi: 10.1085/jgp.81.5.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reuss L. Cyclic AMP inhibits Cl-/HCO3- exchange at the apical membrane of Necturus gallbladder epithelium. J Gen Physiol. 1987 Aug;90(2):173–196. doi: 10.1085/jgp.90.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reuss L. Ion transport across gallbladder epithelium. Physiol Rev. 1989 Apr;69(2):503–545. doi: 10.1152/physrev.1989.69.2.503. [DOI] [PubMed] [Google Scholar]
- Reuss L., Petersen K. U. Cyclic AMP inhibits Na+/H+ exchange at the apical membrane of Necturus gallbladder epithelium. J Gen Physiol. 1985 Mar;85(3):409–429. doi: 10.1085/jgp.85.3.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shibata H., Robinson F. W., Soderling T. R., Kono T. Effects of okadaic acid on insulin-sensitive cAMP phosphodiesterase in rat adipocytes. Evidence that insulin may stimulate the enzyme by phosphorylation. J Biol Chem. 1991 Sep 25;266(27):17948–17953. [PubMed] [Google Scholar]
- Stoddard J. S., Reuss L. Electrophysiological effects of mucosal Cl- removal in Necturus gallbladder epithelium. Am J Physiol. 1989 Sep;257(3 Pt 1):C568–C578. doi: 10.1152/ajpcell.1989.257.3.C568. [DOI] [PubMed] [Google Scholar]
- Tabcharani J. A., Chang X. B., Riordan J. R., Hanrahan J. W. Phosphorylation-regulated Cl- channel in CHO cells stably expressing the cystic fibrosis gene. Nature. 1991 Aug 15;352(6336):628–631. doi: 10.1038/352628a0. [DOI] [PubMed] [Google Scholar]