Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1994 Apr 1;103(4):647–663. doi: 10.1085/jgp.103.4.647

Intracellular pH modulates the availability of vascular L-type Ca2+ channels

PMCID: PMC2216857  PMID: 8057082

Abstract

L-type Ca2+ channel currents were recorded from myocytes isolated from bovine pial and porcine coronary arteries to study the influence of changes in intracellular pH (pHi). Whole cell ICa fell when pHi was made more acidic by substituting HEPES/NaOH with CO2/bicarbonate buffer (pHo 7.4, 36 degrees C), and increased when pHi was made more alkaline by addition of 20 mM NH4Cl. Peak ICa was less pHi sensitive than late ICa (170 ms after depolarization to 0 mV). pHi-effects on single Ca2+ channel currents were studied with 110 mM BaCl2 as the charge carrier (22 degrees C, pHo 7.4). In cell-attached patches pHi was changed by extracellular NH4Cl or through the opened cell. In inside-out patches pHi was controlled through the bath. Independent of the method used the following results were obtained: (a) Single channel conductance (24 pS) and life time of the open state were not influenced by pHi (between pHi 6 and 8.4). (b) Alkaline pHi increased and acidic pHi reduced the channel availability (frequency of nonblank sweeps). (c) Alkaline pHi increased and acidic pHi reduced the frequency of late channel re- openings. The effects are discussed in terms of a deprotonation (protonation) of cytosolic binding sites that favor (prevent) the shift of the channels from a sleepy to an available state. Changes of bath pHo mimicked the pHi effects within 20 s, suggesting that protons can rapidly permeate through the surface membrane of vascular smooth muscle cells. The role of pHi in Ca2+ homeostases and vasotonus is discussed.

Full Text

The Full Text of this article is available as a PDF (966.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Betz E., Heuser D. Cerebral cortical blood flow during changes of acid-base equilibrium of the brain. J Appl Physiol. 1967 Nov;23(5):726–733. doi: 10.1152/jappl.1967.23.5.726. [DOI] [PubMed] [Google Scholar]
  2. Blank P. S., Silverman H. S., Chung O. Y., Hogue B. A., Stern M. D., Hansford R. G., Lakatta E. G., Capogrossi M. C. Cytosolic pH measurements in single cardiac myocytes using carboxy-seminaphthorhodafluor-1. Am J Physiol. 1992 Jul;263(1 Pt 2):H276–H284. doi: 10.1152/ajpheart.1992.263.1.H276. [DOI] [PubMed] [Google Scholar]
  3. Fabiato A., Fabiato F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiace and skeletal muscles. J Physiol. 1978 Mar;276:233–255. doi: 10.1113/jphysiol.1978.sp012231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ganitkevich VYa, Isenberg G. Contribution of two types of calcium channels to membrane conductance of single myocytes from guinea-pig coronary artery. J Physiol. 1990 Jul;426:19–42. doi: 10.1113/jphysiol.1990.sp018125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ghysel-Burton J., Godfraind T. Role of Na-H exchange in the inotropic action of Bay K 8644 and of ouabain in guinea-pig isolated atria. Br J Pharmacol. 1990 Aug;100(4):717–722. doi: 10.1111/j.1476-5381.1990.tb14081.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Horie M., Irisawa H., Noma A. Voltage-dependent magnesium block of adenosine-triphosphate-sensitive potassium channel in guinea-pig ventricular cells. J Physiol. 1987 Jun;387:251–272. doi: 10.1113/jphysiol.1987.sp016572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Inoue Y., Xiong Z. L., Kitamura K., Kuriyama H. Modulation produced by nifedipine of the unitary Ba current of dispersed smooth muscle cells of the rabbit ileum. Pflugers Arch. 1989 Sep;414(5):534–542. doi: 10.1007/BF00580988. [DOI] [PubMed] [Google Scholar]
  8. Irisawa H., Sato R. Intra- and extracellular actions of proton on the calcium current of isolated guinea pig ventricular cells. Circ Res. 1986 Sep;59(3):348–355. doi: 10.1161/01.res.59.3.348. [DOI] [PubMed] [Google Scholar]
  9. Kaibara M., Kameyama M. Inhibition of the calcium channel by intracellular protons in single ventricular myocytes of the guinea-pig. J Physiol. 1988 Sep;403:621–640. doi: 10.1113/jphysiol.1988.sp017268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kameyama M., Kakei M., Sato R., Shibasaki T., Matsuda H., Irisawa H. Intracellular Na+ activates a K+ channel in mammalian cardiac cells. Nature. 1984 May 24;309(5966):354–356. doi: 10.1038/309354a0. [DOI] [PubMed] [Google Scholar]
  11. Kameyama M., Kameyama A., Nakayama T., Kaibara M. Tissue extract recovers cardiac calcium channels from 'run-down'. Pflugers Arch. 1988 Aug;412(3):328–330. doi: 10.1007/BF00582516. [DOI] [PubMed] [Google Scholar]
  12. Klöckner U., Isenberg G. Calcium channel current of vascular smooth muscle cells: extracellular protons modulate gating and single channel conductance. J Gen Physiol. 1994 Apr;103(4):665–678. doi: 10.1085/jgp.103.4.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klöckner U., Isenberg G. Myocytes isolated from porcine coronary arteries: reduction of currents through L-type Ca-channels by verapamil-type Ca-antagonists. J Physiol Pharmacol. 1991 Jun;42(2):163–179. [PubMed] [Google Scholar]
  14. Klöckner U., Trieschmann U., Isenberg G. Pharmacological modulation of calcium and potassium channels in isolated vascular smooth muscle cells. Arzneimittelforschung. 1989 Jan;39(1A):120–126. [PubMed] [Google Scholar]
  15. Koch W. J., Ellinor P. T., Schwartz A. cDNA cloning of a dihydropyridine-sensitive calcium channel from rat aorta. Evidence for the existence of alternatively spliced forms. J Biol Chem. 1990 Oct 15;265(29):17786–17791. [PubMed] [Google Scholar]
  16. Kostyuk P. G. Calcium ionic channels in electrically excitable membrane. Neuroscience. 1980;5(6):945–959. doi: 10.1016/0306-4522(80)90178-5. [DOI] [PubMed] [Google Scholar]
  17. Kurachi Y. The effects of intracellular protons on the electrical activity of single ventricular cells. Pflugers Arch. 1982 Sep;394(3):264–270. doi: 10.1007/BF00589102. [DOI] [PubMed] [Google Scholar]
  18. Kuriyama H., Ito Y., Suzuki H., Kitamura K., Itoh T. Factors modifying contraction-relaxation cycle in vascular smooth muscles. Am J Physiol. 1982 Nov;243(5):H641–H662. doi: 10.1152/ajpheart.1982.243.5.H641. [DOI] [PubMed] [Google Scholar]
  19. Liu S., Piwnica-Worms D., Lieberman M. Intracellular pH regulation in cultured embryonic chick heart cells. Na(+)-dependent Cl-/HCO3- exchange. J Gen Physiol. 1990 Dec;96(6):1247–1269. doi: 10.1085/jgp.96.6.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ochi R., Kawashima Y. Modulation of slow gating process of calcium channels by isoprenaline in guinea-pig ventricular cells. J Physiol. 1990 May;424:187–204. doi: 10.1113/jphysiol.1990.sp018062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pelzer D., Pelzer S., McDonald T. F. Properties and regulation of calcium channels in muscle cells. Rev Physiol Biochem Pharmacol. 1990;114:107–207. doi: 10.1007/BFb0031019. [DOI] [PubMed] [Google Scholar]
  22. Rinaldi G. J., Amado Cattaneo E., Cingolani H. E. Interaction between calcium and hydrogen ions in canine coronary arteries. J Mol Cell Cardiol. 1987 Aug;19(8):773–784. doi: 10.1016/s0022-2828(87)80388-7. [DOI] [PubMed] [Google Scholar]
  23. Rooke T. W., Sparks H. V., Jr Effect of metabolic versus respiratory acid-base changes on isolated coronary artery and saphenous vein. Experientia. 1981;37(9):982–983. doi: 10.1007/BF01971792. [DOI] [PubMed] [Google Scholar]
  24. Schulz I., Thévenod F., Dehlinger-Kremer M. Modulation of intracellular free Ca2+ concentration by IP3-sensitive and IP3-insensitive nonmitochondrial Ca2+ pools. Cell Calcium. 1989 Jul;10(5):325–336. doi: 10.1016/0143-4160(89)90058-4. [DOI] [PubMed] [Google Scholar]
  25. Siskind M. S., McCoy C. E., Chobanian A., Schwartz J. H. Regulation of intracellular calcium by cell pH in vascular smooth muscle cells. Am J Physiol. 1989 Feb;256(2 Pt 1):C234–C240. doi: 10.1152/ajpcell.1989.256.2.C234. [DOI] [PubMed] [Google Scholar]
  26. Tsien R. W., Bean B. P., Hess P., Lansman J. B., Nilius B., Nowycky M. C. Mechanisms of calcium channel modulation by beta-adrenergic agents and dihydropyridine calcium agonists. J Mol Cell Cardiol. 1986 Jul;18(7):691–710. doi: 10.1016/s0022-2828(86)80941-5. [DOI] [PubMed] [Google Scholar]
  27. Van Breemen C., Farinas B. R., Gerba P., McNaughton E. D. Excitation-contraction coupling in rabbit aorta studied by the lanthanum method for measuring cellular calcium influx. Circ Res. 1972 Jan;30(1):44–54. doi: 10.1161/01.res.30.1.44. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES