Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1994 Apr 1;103(4):665–678. doi: 10.1085/jgp.103.4.665

Calcium channel current of vascular smooth muscle cells: extracellular protons modulate gating and single channel conductance

PMCID: PMC2216859  PMID: 8057083

Abstract

Modulation of L-type Ca2+ channel current by extracellular pH (pHo) was studied in vascular smooth muscle cells from bovine pial and porcine coronary arteries. Relative to pH 7.4, alkaline pH reversibly increased and acidic pH reduced ICa. The efficacy of pHo in modulating ICa was reduced when the concentration of the charge carrier was elevated ([Ca2+]o or [Ba2+]o varied between 2 and 110 mM). Analysis of whole cell and single Ca2+ channel currents suggested that more acidic pHo values shift the voltage-dependent gating (approximately 15 mV per pH- unit) and reduce the single Ca2+ channel conductance gCa due to screening of negative surface charges. pHo effects on gCa depended on the pipette [Ba2+] ([Ba2+]p), pK*, the pH providing 50% of saturating conductance, increased with [Ba2+]p according to pK* = 2.7-2.log ([Ba2+]p) suggesting that protons and Ba2+ ions complete for a binding site that modulates gCa. The above mechanisms are discussed in respect to their importance for Ca2+ influx and vasotonus.

Full Text

The Full Text of this article is available as a PDF (775.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bean B. P. Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity, and pharmacology. J Gen Physiol. 1985 Jul;86(1):1–30. doi: 10.1085/jgp.86.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Betz E., Csornai M. Action and interaction of perivascular H+, K+ and Ca++ on pial arteries. Pflugers Arch. 1978 Apr 25;374(1):67–72. doi: 10.1007/BF00585698. [DOI] [PubMed] [Google Scholar]
  3. Dacey R. G., Jr, Duling B. R. A study of rat intracerebral arterioles: methods, morphology, and reactivity. Am J Physiol. 1982 Oct;243(4):H598–H606. doi: 10.1152/ajpheart.1982.243.4.H598. [DOI] [PubMed] [Google Scholar]
  4. Dani J. A. Ion-channel entrances influence permeation. Net charge, size, shape, and binding considerations. Biophys J. 1986 Mar;49(3):607–618. doi: 10.1016/S0006-3495(86)83688-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fenwick E. M., Marty A., Neher E. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol. 1982 Oct;331:577–597. doi: 10.1113/jphysiol.1982.sp014393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ganitkevich VYa, Shuba M. F., Smirnov S. V. Saturation of calcium channels in single isolated smooth muscle cells of guinea-pig taenia caeci. J Physiol. 1988 May;399:419–436. doi: 10.1113/jphysiol.1988.sp017089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hirst G. D., Edwards F. R. Sympathetic neuroeffector transmission in arteries and arterioles. Physiol Rev. 1989 Apr;69(2):546–604. doi: 10.1152/physrev.1989.69.2.546. [DOI] [PubMed] [Google Scholar]
  8. Iijima T., Ciani S., Hagiwara S. Effects of the external pH on Ca channels: experimental studies and theoretical considerations using a two-site, two-ion model. Proc Natl Acad Sci U S A. 1986 Feb;83(3):654–658. doi: 10.1073/pnas.83.3.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Irisawa H., Sato R. Intra- and extracellular actions of proton on the calcium current of isolated guinea pig ventricular cells. Circ Res. 1986 Sep;59(3):348–355. doi: 10.1161/01.res.59.3.348. [DOI] [PubMed] [Google Scholar]
  10. Ito Y., Kitamura K., Kuriyama H. Effects of acetylcholine and catecholamines on the smooth muscle cell of the porcine coronary artery. J Physiol. 1979 Sep;294:595–611. doi: 10.1113/jphysiol.1979.sp012948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klöckner U., Isenberg G. Action potentials and net membrane currents of isolated smooth muscle cells (urinary bladder of the guinea-pig). Pflugers Arch. 1985 Dec;405(4):329–339. doi: 10.1007/BF00595685. [DOI] [PubMed] [Google Scholar]
  12. Klöckner U., Isenberg G. Intracellular pH modulates the availability of vascular L-type Ca2+ channels. J Gen Physiol. 1994 Apr;103(4):647–663. doi: 10.1085/jgp.103.4.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kohlhardt M., Haap K., Figulla H. R. Influence of low extracellular pH upon the Ca inward current and isometric contractile force in mammalian ventricular myocardium. Pflugers Arch. 1976 Oct 15;366(1):31–38. doi: 10.1007/BF02486557. [DOI] [PubMed] [Google Scholar]
  14. Krafte D. S., Kass R. S. Hydrogen ion modulation of Ca channel current in cardiac ventricular cells. Evidence for multiple mechanisms. J Gen Physiol. 1988 May;91(5):641–657. doi: 10.1085/jgp.91.5.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kuo C. C., Hess P. Characterization of the high-affinity Ca2+ binding sites in the L-type Ca2+ channel pore in rat phaeochromocytoma cells. J Physiol. 1993 Jul;466:657–682. [PMC free article] [PubMed] [Google Scholar]
  16. McCulloch J., Edvinsson L., Watt P. Comparison of the effects of potassium and pH on the calibre of cerebral veins and arteries. Pflugers Arch. 1982 Mar;393(1):95–98. doi: 10.1007/BF00582399. [DOI] [PubMed] [Google Scholar]
  17. Ohmori H., Yoshii M. Surface potential reflected in both gating and permeation mechanisms of sodium and calcium channels of the tunicate egg cell membrane. J Physiol. 1977 May;267(2):429–463. doi: 10.1113/jphysiol.1977.sp011821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pelzer D., Pelzer S., McDonald T. F. Properties and regulation of calcium channels in muscle cells. Rev Physiol Biochem Pharmacol. 1990;114:107–207. doi: 10.1007/BFb0031019. [DOI] [PubMed] [Google Scholar]
  19. Rooke T. W., Sparks H. V., Jr Effect of metabolic versus respiratory acid-base changes on isolated coronary artery and saphenous vein. Experientia. 1981;37(9):982–983. doi: 10.1007/BF01971792. [DOI] [PubMed] [Google Scholar]
  20. Simard J. M. Calcium channel currents in isolated smooth muscle cells from the basilar artery of the guinea pig. Pflugers Arch. 1991 Jan;417(5):528–536. doi: 10.1007/BF00370950. [DOI] [PubMed] [Google Scholar]
  21. Smeda J. S., Lombard J. H., Madden J. A., Harder D. R. The effect of alkaline pH and transmural pressure on arterial constriction and membrane potential of hypertensive cerebral arteries. Pflugers Arch. 1987 Mar;408(3):239–242. doi: 10.1007/BF02181465. [DOI] [PubMed] [Google Scholar]
  22. Tytgat J., Nilius B., Carmeliet E. Modulation of the T-type cardiac Ca channel by changes in proton concentration. J Gen Physiol. 1990 Nov;96(5):973–990. doi: 10.1085/jgp.96.5.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vogel S., Sperelakis N. Blockade of myocardial slow inward current at low pH. Am J Physiol. 1977 Sep;233(3):C99–103. doi: 10.1152/ajpcell.1977.233.3.C99. [DOI] [PubMed] [Google Scholar]
  24. West G. A., Leppla D. C., Simard J. M. Effects of external pH on ionic currents in smooth muscle cells from the basilar artery of the guinea pig. Circ Res. 1992 Jul;71(1):201–209. doi: 10.1161/01.res.71.1.201. [DOI] [PubMed] [Google Scholar]
  25. Yasue H., Omote S., Takizawa A., Nagao M., Nosaka K., Nakajima H. Alkalosis-induced coronary vasoconstriction: effects of calcium, diltiazem, nitroglycerin, and propranolol. Am Heart J. 1981 Aug;102(2):206–210. doi: 10.1016/s0002-8703(81)80011-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES