Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1994 Jun 1;103(6):975–989. doi: 10.1085/jgp.103.6.975

The branching angles in computer-generated optimized models of arterial trees

PMCID: PMC2216882  PMID: 7931140

Abstract

The structure of a complex arterial tree model is generated on the computer using the newly developed method of "constrained constructive optimization." The model tree is grown step by step, at each stage of development fulfilling invariant boundary conditions for pressures and flows. The development of structure is governed by adopting minimum volume inside the vessels as target function. The resulting model tree is analyzed regarding the relations between branching angles and segment radii. Results show good agreement with morphometric measurements on corrosion casts of human coronary arteries reported in the literature.

Full Text

The Full Text of this article is available as a PDF (880.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arts T., Kruger R. T., van Gerven W., Lambregts J. A., Reneman R. S. Propagation velocity and reflection of pressure waves in the canine coronary artery. Am J Physiol. 1979 Oct;237(4):H469–H474. doi: 10.1152/ajpheart.1979.237.4.H469. [DOI] [PubMed] [Google Scholar]
  2. Dawant B., Levin M., Popel A. S. Effect of dispersion of vessel diameters and lengths in stochastic networks. I. Modeling of microcirculatory flow. Microvasc Res. 1986 Mar;31(2):203–222. doi: 10.1016/0026-2862(86)90035-x. [DOI] [PubMed] [Google Scholar]
  3. Kamiya A., Togawa T. Optimal branching structure of the vascular tree. Bull Math Biophys. 1972 Dec;34(4):431–438. doi: 10.1007/BF02476705. [DOI] [PubMed] [Google Scholar]
  4. Lefèvre J. Teleonomical optimization of a fractal model of the pulmonary arterial bed. J Theor Biol. 1983 May 21;102(2):225–248. doi: 10.1016/0022-5193(83)90361-2. [DOI] [PubMed] [Google Scholar]
  5. Levin M., Dawant B., Popel A. S. Effect of dispersion of vessel diameters and lengths in stochastic networks. II. Modeling of microvascular hematocrit distribution. Microvasc Res. 1986 Mar;31(2):223–234. doi: 10.1016/0026-2862(86)90036-1. [DOI] [PubMed] [Google Scholar]
  6. Pelosi G., Saviozzi G., Trivella M. G., L'Abbate A. Small artery occlusion: a theoretical approach to the definition of coronary architecture and resistance by a branching tree model. Microvasc Res. 1987 Nov;34(3):318–335. doi: 10.1016/0026-2862(87)90065-3. [DOI] [PubMed] [Google Scholar]
  7. Rodbard S. Vascular caliber. Cardiology. 1975;60(1):4–49. doi: 10.1159/000169701. [DOI] [PubMed] [Google Scholar]
  8. Rooz E., Wiesner T. F., Nerem R. M. Epicardial coronary blood flow including the presence of stenoses and aorto-coronary bypasses--I: Model and numerical method. J Biomech Eng. 1985 Nov;107(4):361–367. doi: 10.1115/1.3138570. [DOI] [PubMed] [Google Scholar]
  9. Smaje L. H., Fraser P. A., Clough G. The distensibility of single capillaries and venules in the cat mesentery. Microvasc Res. 1980 Nov;20(3):358–370. doi: 10.1016/0026-2862(80)90064-3. [DOI] [PubMed] [Google Scholar]
  10. Zamir M., Chee H. Branching characteristics of human coronary arteries. Can J Physiol Pharmacol. 1986 Jun;64(6):661–668. doi: 10.1139/y86-109. [DOI] [PubMed] [Google Scholar]
  11. Zamir M., Chee H. Segment analysis of human coronary arteries. Blood Vessels. 1987;24(1-2):76–84. doi: 10.1159/000158673. [DOI] [PubMed] [Google Scholar]
  12. Zamir M. Distributing and delivering vessels of the human heart. J Gen Physiol. 1988 May;91(5):725–735. doi: 10.1085/jgp.91.5.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zamir M. Nonsymmetrical bifurcations in arterial branching. J Gen Physiol. 1978 Dec;72(6):837–845. doi: 10.1085/jgp.72.6.837. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES