Abstract
One of the modes of action of the red blood cell anion transport protein is the electrically silent net exchange of 1 Cl- for 1 SO4= and 1 H+. Net SO4(=)-Cl- exchange is accelerated by low pH or by conversion of the side chain of glutamate 681 into an alcohol by treatment of intact cells with Woodward's reagent K (WRK) and BH4-. The studies described here were performed to characterize the electrical properties of net SO4(=)-Cl- exchange in cells modified with WRK/BH4-. The SO4= conductance measured in 100 mM SO4= medium is smaller in modified cells than in control cells. However, the efflux of [35S] SO4= into a 150-mM KCl medium is 80-fold larger in modified cells than in control cells and is inhibited 99% by 10 microM H2DIDS. No detectable H+ flux is associated with SO4(=)-Cl- exchange in modified cells. In the presence of gramicidin to increase the cation permeability, the stoichiometry of SO4(=)-Cl- exchange is not distinguishable from 1:1. In modified cells loaded with SO4=, the valinomycin-mediated efflux of 86Rb+ into an Na- gluconate medium is immediately stimulated by the addition of 5 mM extracellular Cl-. Therefore, SO4(=)-Cl- exchange in modified cells causes an outward movement of negative charge, as expected for an obligatory 1:1 SO4(=)-Cl- exchange. This is the first example of an obligatory, electrogenic exchange process in band 3 and demonstrates that the coupling between influx and efflux does not require that the overall exchange be electrically neutral. The effects of membrane potential on SO4(=)-SO4= exchange and SO4(=)-Cl- exchange in modified cells are consistent with a model in which nearly a full net positive charge moves inward through the transmembrane field during the inward Cl- translocation event, and a small net negative charge moves with SO4= during the SO4= translocation event. This result suggests that, in normal cells, the negative charge on Glu 681 traverses most of the transmembrane electric field, accompanied by Cl- and the equivalent of two protein-bound positive charges.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennekou P., Christophersen P. Flux ratio of valinomycin-mediated K+ fluxes across the human red cell membrane in the presence of the protonophore CCCP. J Membr Biol. 1986;93(3):221–227. doi: 10.1007/BF01871176. [DOI] [PubMed] [Google Scholar]
- Berghout A., Raida M., Legrum B., Passow H. The effects of dansylation on the pH dependence of SO4(2-) and Cl- equilibrium exchange and on the H+/SO4(2-) cotransport across the red blood cell membrane. Biochim Biophys Acta. 1989 Nov 17;986(1):75–82. doi: 10.1016/0005-2736(89)90274-5. [DOI] [PubMed] [Google Scholar]
- Bjerrum P. J., Andersen O. S., Borders C. L., Jr, Wieth J. O. Functional carboxyl groups in the red cell anion exchange protein. Modification with an impermeant carbodiimide. J Gen Physiol. 1989 May;93(5):813–839. doi: 10.1085/jgp.93.5.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brahm J. Temperature-dependent changes of chloride transport kinetics in human red cells. J Gen Physiol. 1977 Sep;70(3):283–306. doi: 10.1085/jgp.70.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalmark M. Effects of halides and bicarbonate on chloride transport in human red blood cells. J Gen Physiol. 1976 Feb;67(2):223–234. doi: 10.1085/jgp.67.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Weer P., Gadsby D. C., Rakowski R. F. Voltage dependence of the Na-K pump. Annu Rev Physiol. 1988;50:225–241. doi: 10.1146/annurev.ph.50.030188.001301. [DOI] [PubMed] [Google Scholar]
- Fröhlich O., Gunn R. B. Erythrocyte anion transport: the kinetics of a single-site obligatory exchange system. Biochim Biophys Acta. 1986 Sep 22;864(2):169–194. doi: 10.1016/0304-4157(86)90010-9. [DOI] [PubMed] [Google Scholar]
- Funder J., Wieth J. O. Chloride transport in human erythrocytes and ghosts: a quantitative comparison. J Physiol. 1976 Nov;262(3):679–698. doi: 10.1113/jphysiol.1976.sp011615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grygorczyk R., Schwarz W., Passow H. Potential dependence of the "electrically silent" anion exchange across the plasma membrane of Xenopus oocytes mediated by the band-3 protein of mouse red blood cells. J Membr Biol. 1987;99(2):127–136. doi: 10.1007/BF01871232. [DOI] [PubMed] [Google Scholar]
- Gunn R. B., Dalmark M., Tosteson D. C., Wieth J. O. Characteristics of chloride transport in human red blood cells. J Gen Physiol. 1973 Feb;61(2):185–206. doi: 10.1085/jgp.61.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gunn R. B., Fröhlich O. Asymmetry in the mechanism for anion exchange in human red blood cell membranes. Evidence for reciprocating sites that react with one transported anion at a time. J Gen Physiol. 1979 Sep;74(3):351–374. doi: 10.1085/jgp.74.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gunn R. B., Wieth J. O., Tosteson D. C. Some effects of low pH on chloride exchange in human red blood cells. J Gen Physiol. 1975 Jun;65(6):731–749. doi: 10.1085/jgp.65.6.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman J. F., Laris P. C. Determination of membrane potentials in human and Amphiuma red blood cells by means of fluorescent probe. J Physiol. 1974 Jun;239(3):519–552. doi: 10.1113/jphysiol.1974.sp010581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jennings M. L., Adams-Lackey M., Denney G. H. Peptides of human erythrocyte band 3 protein produced by extracellular papain cleavage. J Biol Chem. 1984 Apr 10;259(7):4652–4660. [PubMed] [Google Scholar]
- Jennings M. L., Al-Rhaiyel S. Modification of a carboxyl group that appears to cross the permeability barrier in the red blood cell anion transporter. J Gen Physiol. 1988 Aug;92(2):161–178. doi: 10.1085/jgp.92.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jennings M. L., Anderson M. P. Chemical modification and labeling of glutamate residues at the stilbenedisulfonate site of human red blood cell band 3 protein. J Biol Chem. 1987 Feb 5;262(4):1691–1697. [PubMed] [Google Scholar]
- Jennings M. L. Characteristics of the binding site for extracellular substrate anions in human red blood cell band 3. Ann N Y Acad Sci. 1989;574:84–95. doi: 10.1111/j.1749-6632.1989.tb25138.x. [DOI] [PubMed] [Google Scholar]
- Jennings M. L. Proton fluxes associated with erythrocyte membrane anion exchange. J Membr Biol. 1976 Aug 26;28(2-3):187–205. doi: 10.1007/BF01869697. [DOI] [PubMed] [Google Scholar]
- Jennings M. L., Schulz R. K., Allen M. Effects of membrane potential on electrically silent transport. Potential-independent translocation and asymmetric potential-dependent substrate binding to the red blood cell anion exchange protein. J Gen Physiol. 1990 Nov;96(5):991–1012. doi: 10.1085/jgp.96.5.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jennings M. L., Smith J. S. Anion-proton cotransport through the human red blood cell band 3 protein. Role of glutamate 681. J Biol Chem. 1992 Jul 15;267(20):13964–13971. [PubMed] [Google Scholar]
- Jennings M. L. Stoichiometry of a half-turnover of band 3, the chloride transport protein of human erythrocytes. J Gen Physiol. 1982 Feb;79(2):169–185. doi: 10.1085/jgp.79.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jennings M. L. Structure and function of the red blood cell anion transport protein. Annu Rev Biophys Biophys Chem. 1989;18:397–430. doi: 10.1146/annurev.bb.18.060189.002145. [DOI] [PubMed] [Google Scholar]
- Klingenberg M. Molecular aspects of the adenine nucleotide carrier from mitochondria. Arch Biochem Biophys. 1989 Apr;270(1):1–14. doi: 10.1016/0003-9861(89)90001-5. [DOI] [PubMed] [Google Scholar]
- Knauf P. A., Fuhrmann G. F., Rothstein S., Rothstein A. The relationship between anion exchange and net anion flow across the human red blood cell membrane. J Gen Physiol. 1977 Mar;69(3):363–386. doi: 10.1085/jgp.69.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kopito R. R. Molecular biology of the anion exchanger gene family. Int Rev Cytol. 1990;123:177–199. doi: 10.1016/s0074-7696(08)60674-9. [DOI] [PubMed] [Google Scholar]
- Ku C. P., Jennings M. L., Passow H. A comparison of the inhibitory potency of reversibly acting inhibitors of anion transport on chloride and sulfate movements across the human red cell membrane. Biochim Biophys Acta. 1979 May 3;553(1):132–141. doi: 10.1016/0005-2736(79)90035-x. [DOI] [PubMed] [Google Scholar]
- Macey R. I., Adorante J. S., Orme F. W. Erythrocyte membrane potentials determined by hydrogen ion distribution. Biochim Biophys Acta. 1978 Sep 22;512(2):284–295. doi: 10.1016/0005-2736(78)90253-5. [DOI] [PubMed] [Google Scholar]
- Milanick M. A., Gunn R. B. Proton-sulfate co-transport: mechanism of H+ and sulfate addition to the chloride transporter of human red blood cells. J Gen Physiol. 1982 Jan;79(1):87–113. doi: 10.1085/jgp.79.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milanick M. A., Gunn R. B. Proton-sulfate cotransport: external proton activation of sulfate influx into human red blood cells. Am J Physiol. 1984 Sep;247(3 Pt 1):C247–C259. doi: 10.1152/ajpcell.1984.247.3.C247. [DOI] [PubMed] [Google Scholar]
- Mueller T. J., Li Y. T., Morrison M. Effect of endo-beta-galactosidase on intact human erythrocytes. J Biol Chem. 1979 Sep 10;254(17):8103–8106. [PubMed] [Google Scholar]
- Passow H. Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane. Rev Physiol Biochem Pharmacol. 1986;103:61–203. doi: 10.1007/3540153330_2. [DOI] [PubMed] [Google Scholar]
- Philipson K. D., Nicoll D. A. Molecular and kinetic aspects of sodium-calcium exchange. Int Rev Cytol. 1993;137C:199–227. [PubMed] [Google Scholar]
- Restrepo D., Cronise B. L., Snyder R. B., Spinelli L. J., Knauf P. A. Kinetics of DIDS inhibition of HL-60 cell anion exchange rules out ping-pong model with slippage. Am J Physiol. 1991 Mar;260(3 Pt 1):C535–C544. doi: 10.1152/ajpcell.1991.260.3.C535. [DOI] [PubMed] [Google Scholar]
- Restrepo D., Kozody D. J., Spinelli L. J., Knauf P. A. Cl-Cl exchange in promyelocytic HL-60 cells follows simultaneous rather than ping-pong kinetics. Am J Physiol. 1989 Sep;257(3 Pt 1):C520–C527. doi: 10.1152/ajpcell.1989.257.3.C520. [DOI] [PubMed] [Google Scholar]