Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1995 Jan 1;105(1):117–148. doi: 10.1085/jgp.105.1.117

Transfer of graded potentials at the photoreceptor-interneuron synapse

PMCID: PMC2216927  PMID: 7537323

Abstract

To characterize the transfer of graded potentials and the properties of the associated noise in the photoreceptor-interneuron synapse of the blowfly (Calliphora vicina) compound eye, we recorded voltage responses of photoreceptors (R1-6) and large monopolar cells (LMC) evoked by: (a) steps of light presented in the dark; (b) contrast steps; and (c) pseudorandomly modulated contrast stimuli at backgrounds covering 6 log intensity units. Additionally, we made recordings from photoreceptor axon terminals. Increased light adaptation gradually changed the synaptic signal transfer from low-pass to band-pass filtering. This was accompanied by decreased synaptic delay and increased contrast gain, but the overall synaptic gain and the intrinsic noise (i.e., transmission noise) were reduced. Based on these results, we describe a descriptive synaptic model, in which the kinetics of the tonic transmitter (histamine) release from the photoreceptor axon terminals change with mean photoreceptor depolarization. During signal transmission, tonic transmitter release is augmented by voltage- dependent contrast-enhancing mechanisms in the photoreceptor axons that produce fast transients from the rising phases of the photoreceptor responses and add these enhanced voltages to the original photoreceptor responses. The model can predict the experimental findings and it agrees with the recently proposed theory of maximizing sensory information.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coles J. A., Schneider-Picard G. Amplification of small signals by voltage-gated sodium channels in drone photoreceptors. J Comp Physiol A. 1989 Apr;165(1):109–118. doi: 10.1007/BF00613804. [DOI] [PubMed] [Google Scholar]
  2. Corey D. P., Dubinsky J. M., Schwartz E. A. The calcium current in inner segments of rods from the salamander (Ambystoma tigrinum) retina. J Physiol. 1984 Sep;354:557–575. doi: 10.1113/jphysiol.1984.sp015393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dubs A., Laughlin S. B., Srinivasan M. V. Single photon signals in fly photoreceptors and first order interneurones at behavioral threshold. J Physiol. 1981 Aug;317:317–334. doi: 10.1113/jphysiol.1981.sp013827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. French A. S. Coherence improvement in white noise analysis by the use of a repeated random sequence generator. IEEE Trans Biomed Eng. 1980 Jan;27(1):51–53. doi: 10.1109/TBME.1980.326692. [DOI] [PubMed] [Google Scholar]
  5. French A. S., Holden A. V., Stein R. B. The estimation of the frequency response function of a mechanoreceptor. Kybernetik. 1972 Jul;11(1):15–23. doi: 10.1007/BF00267761. [DOI] [PubMed] [Google Scholar]
  6. French A. S., Korenberg M. J., Järvilehto M., Kouvalainen E., Juusola M., Weckström M. The dynamic nonlinear behavior of fly photoreceptors evoked by a wide range of light intensities. Biophys J. 1993 Aug;65(2):832–839. doi: 10.1016/S0006-3495(93)81116-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. French A. S. Phototransduction in the fly compound eye exhibits temporal resonances and a pure time delay. Nature. 1980 Jan 10;283(5743):200–202. doi: 10.1038/283200a0. [DOI] [PubMed] [Google Scholar]
  8. Hardie R. C. A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. Nature. 1989 Jun 29;339(6227):704–706. doi: 10.1038/339704a0. [DOI] [PubMed] [Google Scholar]
  9. Hardie R. C. Is histamine a neurotransmitter in insect photoreceptors? J Comp Physiol A. 1987 Aug;161(2):201–213. doi: 10.1007/BF00615241. [DOI] [PubMed] [Google Scholar]
  10. Hayashi J. H., Stuart A. E. Currents in the presynaptic terminal arbors of barnacle photoreceptors. Vis Neurosci. 1993 Mar-Apr;10(2):261–270. doi: 10.1017/s0952523800003667. [DOI] [PubMed] [Google Scholar]
  11. Howard J., Blakeslee B., Laughlin S. B. The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina. Proc R Soc Lond B Biol Sci. 1987 Sep 22;231(1265):415–435. doi: 10.1098/rspb.1987.0053. [DOI] [PubMed] [Google Scholar]
  12. Juusola M., Kouvalainen E., Järvilehto M., Weckström M. Contrast gain, signal-to-noise ratio, and linearity in light-adapted blowfly photoreceptors. J Gen Physiol. 1994 Sep;104(3):593–621. doi: 10.1085/jgp.104.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Juusola M., Weckström M. Band-pass filtering by voltage-dependent membrane in an insect photoreceptor. Neurosci Lett. 1993 May 14;154(1-2):84–88. doi: 10.1016/0304-3940(93)90177-m. [DOI] [PubMed] [Google Scholar]
  14. Järvilehto M., Zettler F. Electrophysiological-histological studies on some functional properties of visual cells and second order neurons of an insect retina. Z Zellforsch Mikrosk Anat. 1973;136(2):291–306. doi: 10.1007/BF00307446. [DOI] [PubMed] [Google Scholar]
  15. Kaneko A., Pinto L. H., Tachibana M. Transient calcium current of retinal bipolar cells of the mouse. J Physiol. 1989 Mar;410:613–629. doi: 10.1113/jphysiol.1989.sp017551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kirschfeld K. Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von MUSCA. Exp Brain Res. 1967;3(3):248–270. doi: 10.1007/BF00235588. [DOI] [PubMed] [Google Scholar]
  17. Koshland D. E., Jr, Goldbeter A., Stock J. B. Amplification and adaptation in regulatory and sensory systems. Science. 1982 Jul 16;217(4556):220–225. doi: 10.1126/science.7089556. [DOI] [PubMed] [Google Scholar]
  18. Kouvalainen E., Weckström M., Juusola M. A method for determining photoreceptor signal-to-noise ratio in the time and frequency domains with a pseudorandom stimulus. Vis Neurosci. 1994 Nov-Dec;11(6):1221–1225. doi: 10.1017/s095252380000701x. [DOI] [PubMed] [Google Scholar]
  19. Laughlin S. B., Howard J., Blakeslee B. Synaptic limitations to contrast coding in the retina of the blowfly Calliphora. Proc R Soc Lond B Biol Sci. 1987 Sep 22;231(1265):437–467. doi: 10.1098/rspb.1987.0054. [DOI] [PubMed] [Google Scholar]
  20. Laughlin S. B. The role of sensory adaptation in the retina. J Exp Biol. 1989 Sep;146:39–62. doi: 10.1242/jeb.146.1.39. [DOI] [PubMed] [Google Scholar]
  21. Laughlin S. A simple coding procedure enhances a neuron's information capacity. Z Naturforsch C. 1981 Sep-Oct;36(9-10):910–912. [PubMed] [Google Scholar]
  22. Miller R. J. Multiple calcium channels and neuronal function. Science. 1987 Jan 2;235(4784):46–52. doi: 10.1126/science.2432656. [DOI] [PubMed] [Google Scholar]
  23. Nicol D., Meinertzhagen I. A. An analysis of the number and composition of the synaptic populations formed by photoreceptors of the fly. J Comp Neurol. 1982 May 1;207(1):29–44. doi: 10.1002/cne.902070104. [DOI] [PubMed] [Google Scholar]
  24. Rubinstein C. T., Bar-Nachum S., Selinger Z., Minke B. Light-induced retinal degeneration in rdgB (retinal degeneration B) mutant of Drosophila: electrophysiological and morphological manifestations of degeneration. Vis Neurosci. 1989;2(6):529–539. doi: 10.1017/s0952523800003473. [DOI] [PubMed] [Google Scholar]
  25. Shaw S. R. Early visual processing in insects. J Exp Biol. 1984 Sep;112:225–251. doi: 10.1242/jeb.112.1.225. [DOI] [PubMed] [Google Scholar]
  26. Stockbridge N., Ross W. N. Localized Ca2+ and calcium-activated potassium conductances in terminals of a barnacle photoreceptor. Nature. 1984 May 17;309(5965):266–268. doi: 10.1038/309266a0. [DOI] [PubMed] [Google Scholar]
  27. Uusitalo R. O., Weckström M. The regulation of chloride homeostasis in the small nonspiking visual interneurons of the fly compound eye. J Neurophysiol. 1994 Apr;71(4):1381–1389. doi: 10.1152/jn.1994.71.4.1381. [DOI] [PubMed] [Google Scholar]
  28. Van Hateren J. H. Spatiotemporal contrast sensitivity of early vision. Vision Res. 1993 Jan;33(2):257–267. doi: 10.1016/0042-6989(93)90163-q. [DOI] [PubMed] [Google Scholar]
  29. Weckström M., Hardie R. C., Laughlin S. B. Voltage-activated potassium channels in blowfly photoreceptors and their role in light adaptation. J Physiol. 1991;440:635–657. doi: 10.1113/jphysiol.1991.sp018729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Weckström M., Järvilehto M., Heimonen K. Spike-like potentials in the axons of nonspiking photoreceptors. J Neurophysiol. 1993 Jan;69(1):293–296. doi: 10.1152/jn.1993.69.1.293. [DOI] [PubMed] [Google Scholar]
  31. Weckström M., Kouvalainen E., Juusola M. Measurement of cell impedance in frequency domain using discontinuous current clamp and white-noise-modulated current injection. Pflugers Arch. 1992 Aug;421(5):469–472. doi: 10.1007/BF00370258. [DOI] [PubMed] [Google Scholar]
  32. Wong F., Knight B. W., Dodge F. A. Adapting bump model for ventral photoreceptors of Limulus. J Gen Physiol. 1982 Jun;79(6):1089–1113. doi: 10.1085/jgp.79.6.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wong F. Nature of light-induced conductance changes in ventral photoreceptors of Limulus. Nature. 1978 Nov 2;276(5683):76–79. doi: 10.1038/276076a0. [DOI] [PubMed] [Google Scholar]
  34. van Hateren J. H. A theory of maximizing sensory information. Biol Cybern. 1992;68(1):23–29. doi: 10.1007/BF00203134. [DOI] [PubMed] [Google Scholar]
  35. van Hateren J. H. Electrical coupling of neuro-ommatidial photoreceptor cells in the blowfly. J Comp Physiol A. 1986 Jun;158(6):795–811. doi: 10.1007/BF01324822. [DOI] [PubMed] [Google Scholar]
  36. van Hateren J. H. Real and optimal neural images in early vision. Nature. 1992 Nov 5;360(6399):68–70. doi: 10.1038/360068a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES