Abstract
We have synthesized a model local anesthetic (LA), N-(2-di-N-butyl- aminoethyl)-4-azidobenzamide (DNB-AB), containing the photoactivatable aryl azido moiety, which is known to form a covalent bond to adjacent molecules when exposed to UV light (Fleet, G.W., J.R. Knowles, and R.R. Porter. 1972. Biochemical Journal. 128:499-508. Ji, T.H. 1979. Biochimica et Biophysica Acta. 559:39-69). We studied the effects of DNB-AB on the sodium current (INa) under whole-cell voltage clamp in clonal mammalian GH3 cells and on 3[H]-BTX-B binding to sheep brain synaptoneurosomes. In the absence of UV illumination, DNB-AB behaved similarly to known LAs, producing both reversible block of peak INa (IC50 = 26 microM, 20 degrees C) and reversible inhibition of 3[H]-BTX- B (50 nM in the presence of 0.12 microgram/liter Leiurus quinquestriatus scorpion venom) binding (IC50 = 3.3 microM, 37 degrees C), implying a noncovalent association between DNB-AB and its receptor(s). After exposure to UV light, both block of INa and inhibition of 3[H]-BTX-B binding were only partially reversible (INa = 42% of control; 3[H]-BTX-B binding = 23% of control) showing evidence of a light-dependent, covalent association between DNB-AB and its receptor(s). In the absence of drug, UV light had less effect on INa (post exposure INa = 96% of control) or on 3[H]-BTX-B binding (post exposure binding = 70% of control). The irreversible block of INa was partially protected by coincubation of DNB-AB with 1 mM bupivacaine (IC50 = 45 microM, for INa inhibition at 20 degrees C, Wang, G.K., and S.Y. Wang. 1992. Journal of General Physiology. 100:1003-1020), (post exposure INa = 73% of control). The irreversible inhibition of 3[H]-BTX- B binding also was partially protected by coincubation with bupivacaine (500 microM, 37 degrees C) (post exposure binding = 51% of control), suggesting that the site of irreversible inhibition of both INa and 3[H]-BTX-B binding is shared with the clinical LA bupivacaine.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aldrich R. W., Corey D. P., Stevens C. F. A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature. 1983 Dec 1;306(5942):436–441. doi: 10.1038/306436a0. [DOI] [PubMed] [Google Scholar]
- Armstrong C. M., Bezanilla F. Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol. 1974 May;63(5):533–552. doi: 10.1085/jgp.63.5.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armstrong C. M., Gilly W. F. Access resistance and space clamp problems associated with whole-cell patch clamping. Methods Enzymol. 1992;207:100–122. doi: 10.1016/0076-6879(92)07007-b. [DOI] [PubMed] [Google Scholar]
- Armstrong C. M. Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons. J Gen Physiol. 1969 Nov;54(5):553–575. doi: 10.1085/jgp.54.5.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bezanilla F., Armstrong C. M. Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol. 1977 Nov;70(5):549–566. doi: 10.1085/jgp.70.5.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown G. B., Tieszen S. C., Daly J. W., Warnick J. E., Albuquerque E. X. Batrachotoxinin-A 20-alpha-benzoate: a new radioactive ligand for voltage sensitive sodium channels. Cell Mol Neurobiol. 1981 Mar;1(1):19–40. doi: 10.1007/BF00736037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butterworth J. F., 4th, Strichartz G. R. Molecular mechanisms of local anesthesia: a review. Anesthesiology. 1990 Apr;72(4):711–734. doi: 10.1097/00000542-199004000-00022. [DOI] [PubMed] [Google Scholar]
- Castle N. A. Bupivacaine inhibits the transient outward K+ current but not the inward rectifier in rat ventricular myocytes. J Pharmacol Exp Ther. 1990 Dec;255(3):1038–1046. [PubMed] [Google Scholar]
- Castle N. A. Selective inhibition of potassium currents in rat ventricle by clofilium and its tertiary homolog. J Pharmacol Exp Ther. 1991 Apr;257(1):342–350. [PubMed] [Google Scholar]
- Catterall W. A., Morrow C. S., Daly J. W., Brown G. B. Binding of batrachotoxinin A 20-alpha-benzoate to a receptor site associated with sodium channels in synaptic nerve ending particles. J Biol Chem. 1981 Sep 10;256(17):8922–8927. [PubMed] [Google Scholar]
- Chernoff D. M. Kinetic analysis of phasic inhibition of neuronal sodium currents by lidocaine and bupivacaine. Biophys J. 1990 Jul;58(1):53–68. doi: 10.1016/S0006-3495(90)82353-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chernoff D. M., Strichartz G. R. Kinetics of local anesthetic inhibition of neuronal sodium currents. pH and hydrophobicity dependence. Biophys J. 1990 Jul;58(1):69–81. doi: 10.1016/S0006-3495(90)82354-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cota G., Armstrong C. M. Sodium channel gating in clonal pituitary cells. The inactivation step is not voltage dependent. J Gen Physiol. 1989 Aug;94(2):213–232. doi: 10.1085/jgp.94.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Courtney K. R. Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA. J Pharmacol Exp Ther. 1975 Nov;195(2):225–236. [PubMed] [Google Scholar]
- Courtney K. R. Structure-activity relations for frequency-dependent sodium channel block in nerve by local anesthetics. J Pharmacol Exp Ther. 1980 Apr;213(1):114–119. [PubMed] [Google Scholar]
- Creveling C. R., Bell M. E., Burke T. R., Jr, Chang E., Lewandowski-Lovenberg G. A., Kim C. H., Rice K. C., Daly J. W. Procaine isothiocyanate: an irreversible inhibitor of the specific binding of [3H]batrachotoxinin-A benzoate to sodium channels. Neurochem Res. 1990 Apr;15(4):441–448. doi: 10.1007/BF00969931. [DOI] [PubMed] [Google Scholar]
- Creveling C. R., McNeal E. T., McCulloh D. H., Daly J. W. Membrane potentials in cell-free preparations from guinea pig cerebral cortex: effect of depolarizing agents and cyclic nucleotides. J Neurochem. 1980 Oct;35(4):922–932. doi: 10.1111/j.1471-4159.1980.tb07091.x. [DOI] [PubMed] [Google Scholar]
- Dodd P. R., Hardy J. A., Oakley A. E., Edwardson J. A., Perry E. K., Delaunoy J. P. A rapid method for preparing synaptosomes: comparison, with alternative procedures. Brain Res. 1981 Dec 7;226(1-2):107–118. doi: 10.1016/0006-8993(81)91086-6. [DOI] [PubMed] [Google Scholar]
- Fleet G. W., Knowles J. R., Porter R. R. The antibody binding site. Labelling of a specific antibody against the photo-precursor of an aryl nitrene. Biochem J. 1972 Jul;128(3):499–508. doi: 10.1042/bj1280499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox J. M. Selective blocking of the nodal sodium channels by ultraviolet radiation. II. The interaction of Ca++, H+, and membrane potential. Pflugers Arch. 1974;351(4):303–314. doi: 10.1007/BF00593316. [DOI] [PubMed] [Google Scholar]
- Gilliam F. R., 3rd, Starmer C. F., Grant A. O. Blockade of rabbit atrial sodium channels by lidocaine. Characterization of continuous and frequency-dependent blocking. Circ Res. 1989 Sep;65(3):723–739. doi: 10.1161/01.res.65.3.723. [DOI] [PubMed] [Google Scholar]
- Gusovsky F., Nishizawa Y., Padgett W., McNeal E. T., Rice K., Kim C. H., Creveling C. R., Daly J. W. Voltage-dependent sodium channels in synaptoneurosomes: studies with 22Na+ influx and [3H]saxitoxin and [3H]batrachotoxinin-A 20-alpha-benzoate binding. Effects of proparacaine isothiocyanate. Brain Res. 1990 Jun 4;518(1-2):101–106. doi: 10.1016/0006-8993(90)90959-f. [DOI] [PubMed] [Google Scholar]
- Hahin R., Strichartz G. Effects of deuterium oxide on the rate and dissociation constants for saxitoxin and tetrodotoxin action. Voltage-clamp studies on frog myelinated nerve. J Gen Physiol. 1981 Aug;78(2):113–139. doi: 10.1085/jgp.78.2.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Hill R. J., Duff H. J., Sheldon R. S. Determinants of stereospecific binding of type I antiarrhythmic drugs to cardiac sodium channels. Mol Pharmacol. 1988 Nov;34(5):659–663. [PubMed] [Google Scholar]
- Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol. 1977 Apr;69(4):497–515. doi: 10.1085/jgp.69.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hondeghem L. M., Katzung B. G. Antiarrhythmic agents: the modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. Annu Rev Pharmacol Toxicol. 1984;24:387–423. doi: 10.1146/annurev.pa.24.040184.002131. [DOI] [PubMed] [Google Scholar]
- Hondeghem L. M., Katzung B. G. Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta. 1977 Nov 14;472(3-4):373–398. doi: 10.1016/0304-4157(77)90003-x. [DOI] [PubMed] [Google Scholar]
- Ji T. H. The application of chemical crosslinking for studies on cell membranes and the identification of surface reporters. Biochim Biophys Acta. 1979 Apr 23;559(1):39–69. doi: 10.1016/0304-4157(79)90007-8. [DOI] [PubMed] [Google Scholar]
- Lee-Son S., Wang G. K., Concus A., Crill E., Strichartz G. Stereoselective inhibition of neuronal sodium channels by local anesthetics. Evidence for two sites of action? Anesthesiology. 1992 Aug;77(2):324–335. doi: 10.1097/00000542-199208000-00016. [DOI] [PubMed] [Google Scholar]
- McNeal E. T., Lewandowski G. A., Daly J. W., Creveling C. R. [3H]Batrachotoxinin A 20 alpha-benzoate binding to voltage-sensitive sodium channels: a rapid and quantitative assay for local anesthetic activity in a variety of drugs. J Med Chem. 1985 Mar;28(3):381–388. doi: 10.1021/jm00381a019. [DOI] [PubMed] [Google Scholar]
- Neumcke B., Schwarz W., Stämpfli R. Block of Na channels in the membrane of myelinated nerve by benzocaine. Pflugers Arch. 1981 Jun;390(3):230–236. doi: 10.1007/BF00658267. [DOI] [PubMed] [Google Scholar]
- Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
- Postma S. W., Catterall W. A. Inhibition of binding of [3H]batrachotoxinin A 20-alpha-benzoate to sodium channels by local anesthetics. Mol Pharmacol. 1984 Mar;25(2):219–227. [PubMed] [Google Scholar]
- Rando T. A., Wang G. K., Strichartz G. R. The interaction between the activator agents batrachotoxin and veratridine and the gating processes of neuronal sodium channels. Mol Pharmacol. 1986 May;29(5):467–477. [PubMed] [Google Scholar]
- Schwarz W., Palade P. T., Hille B. Local anesthetics. Effect of pH on use-dependent block of sodium channels in frog muscle. Biophys J. 1977 Dec;20(3):343–368. doi: 10.1016/S0006-3495(77)85554-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheldon R. S., Cannon N. J., Duff H. J. A receptor for type I antiarrhythmic drugs associated with rat cardiac sodium channels. Circ Res. 1987 Oct;61(4):492–497. doi: 10.1161/01.res.61.4.492. [DOI] [PubMed] [Google Scholar]
- Starmer C. F., Grant A. O., Strauss H. C. Mechanisms of use-dependent block of sodium channels in excitable membranes by local anesthetics. Biophys J. 1984 Jul;46(1):15–27. doi: 10.1016/S0006-3495(84)83994-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strichartz G. R. The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol. 1973 Jul;62(1):37–57. doi: 10.1085/jgp.62.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strichartz G. Structure of the saxitoxin binding site at sodium channels in nerve membranes. Exchange of tritium from bound toxin molecules. Mol Pharmacol. 1982 Mar;21(2):343–350. [PubMed] [Google Scholar]
- Tamkun M. M., Catterall W. A. Ion flux studies of voltage-sensitive sodium channels in synaptic nerve-ending particles. Mol Pharmacol. 1981 Jan;19(1):78–86. [PubMed] [Google Scholar]
- VON MURALT A., STAMPFLI R. Die photochemische Wirkung von Ultraviolettlicht auf den erregten Ranvierschen Knoten der einzelnen Nervenfaser; Beiträge zur Methode der stroboskopischen Photochemie. Helv Physiol Pharmacol Acta. 1953;11(2):182–193. [PubMed] [Google Scholar]
- Wang G. K., Strichartz G. R. Purification and physiological characterization of neurotoxins from venoms of the scorpions centruroides sculpturatus and leiurus quinquestriatus. Mol Pharmacol. 1983 Mar;23(2):519–533. [PubMed] [Google Scholar]
- Wang G. K., Wang S. Y. Altered stereoselectivity of cocaine and bupivacaine isomers in normal and batrachotoxin-modified Na+ channels. J Gen Physiol. 1992 Dec;100(6):1003–1020. doi: 10.1085/jgp.100.6.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weigele J. B., Barchi R. L. Ultraviolet irradiation produces loss of saxitoxin binding to sodium channels in rat synaptosomes. J Neurochem. 1980 Aug;35(2):430–435. doi: 10.1111/j.1471-4159.1980.tb06283.x. [DOI] [PubMed] [Google Scholar]
