Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1995 Feb 1;105(2):267–287. doi: 10.1085/jgp.105.2.267

Irreversible inhibition of sodium current and batrachotoxin binding by a photoaffinity-derivatized local anesthetic

PMCID: PMC2216936  PMID: 7760019

Abstract

We have synthesized a model local anesthetic (LA), N-(2-di-N-butyl- aminoethyl)-4-azidobenzamide (DNB-AB), containing the photoactivatable aryl azido moiety, which is known to form a covalent bond to adjacent molecules when exposed to UV light (Fleet, G.W., J.R. Knowles, and R.R. Porter. 1972. Biochemical Journal. 128:499-508. Ji, T.H. 1979. Biochimica et Biophysica Acta. 559:39-69). We studied the effects of DNB-AB on the sodium current (INa) under whole-cell voltage clamp in clonal mammalian GH3 cells and on 3[H]-BTX-B binding to sheep brain synaptoneurosomes. In the absence of UV illumination, DNB-AB behaved similarly to known LAs, producing both reversible block of peak INa (IC50 = 26 microM, 20 degrees C) and reversible inhibition of 3[H]-BTX- B (50 nM in the presence of 0.12 microgram/liter Leiurus quinquestriatus scorpion venom) binding (IC50 = 3.3 microM, 37 degrees C), implying a noncovalent association between DNB-AB and its receptor(s). After exposure to UV light, both block of INa and inhibition of 3[H]-BTX-B binding were only partially reversible (INa = 42% of control; 3[H]-BTX-B binding = 23% of control) showing evidence of a light-dependent, covalent association between DNB-AB and its receptor(s). In the absence of drug, UV light had less effect on INa (post exposure INa = 96% of control) or on 3[H]-BTX-B binding (post exposure binding = 70% of control). The irreversible block of INa was partially protected by coincubation of DNB-AB with 1 mM bupivacaine (IC50 = 45 microM, for INa inhibition at 20 degrees C, Wang, G.K., and S.Y. Wang. 1992. Journal of General Physiology. 100:1003-1020), (post exposure INa = 73% of control). The irreversible inhibition of 3[H]-BTX- B binding also was partially protected by coincubation with bupivacaine (500 microM, 37 degrees C) (post exposure binding = 51% of control), suggesting that the site of irreversible inhibition of both INa and 3[H]-BTX-B binding is shared with the clinical LA bupivacaine.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldrich R. W., Corey D. P., Stevens C. F. A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature. 1983 Dec 1;306(5942):436–441. doi: 10.1038/306436a0. [DOI] [PubMed] [Google Scholar]
  2. Armstrong C. M., Bezanilla F. Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol. 1974 May;63(5):533–552. doi: 10.1085/jgp.63.5.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armstrong C. M., Gilly W. F. Access resistance and space clamp problems associated with whole-cell patch clamping. Methods Enzymol. 1992;207:100–122. doi: 10.1016/0076-6879(92)07007-b. [DOI] [PubMed] [Google Scholar]
  4. Armstrong C. M. Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons. J Gen Physiol. 1969 Nov;54(5):553–575. doi: 10.1085/jgp.54.5.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bezanilla F., Armstrong C. M. Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol. 1977 Nov;70(5):549–566. doi: 10.1085/jgp.70.5.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown G. B., Tieszen S. C., Daly J. W., Warnick J. E., Albuquerque E. X. Batrachotoxinin-A 20-alpha-benzoate: a new radioactive ligand for voltage sensitive sodium channels. Cell Mol Neurobiol. 1981 Mar;1(1):19–40. doi: 10.1007/BF00736037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Butterworth J. F., 4th, Strichartz G. R. Molecular mechanisms of local anesthesia: a review. Anesthesiology. 1990 Apr;72(4):711–734. doi: 10.1097/00000542-199004000-00022. [DOI] [PubMed] [Google Scholar]
  8. Castle N. A. Bupivacaine inhibits the transient outward K+ current but not the inward rectifier in rat ventricular myocytes. J Pharmacol Exp Ther. 1990 Dec;255(3):1038–1046. [PubMed] [Google Scholar]
  9. Castle N. A. Selective inhibition of potassium currents in rat ventricle by clofilium and its tertiary homolog. J Pharmacol Exp Ther. 1991 Apr;257(1):342–350. [PubMed] [Google Scholar]
  10. Catterall W. A., Morrow C. S., Daly J. W., Brown G. B. Binding of batrachotoxinin A 20-alpha-benzoate to a receptor site associated with sodium channels in synaptic nerve ending particles. J Biol Chem. 1981 Sep 10;256(17):8922–8927. [PubMed] [Google Scholar]
  11. Chernoff D. M. Kinetic analysis of phasic inhibition of neuronal sodium currents by lidocaine and bupivacaine. Biophys J. 1990 Jul;58(1):53–68. doi: 10.1016/S0006-3495(90)82353-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chernoff D. M., Strichartz G. R. Kinetics of local anesthetic inhibition of neuronal sodium currents. pH and hydrophobicity dependence. Biophys J. 1990 Jul;58(1):69–81. doi: 10.1016/S0006-3495(90)82354-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cota G., Armstrong C. M. Sodium channel gating in clonal pituitary cells. The inactivation step is not voltage dependent. J Gen Physiol. 1989 Aug;94(2):213–232. doi: 10.1085/jgp.94.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Courtney K. R. Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA. J Pharmacol Exp Ther. 1975 Nov;195(2):225–236. [PubMed] [Google Scholar]
  15. Courtney K. R. Structure-activity relations for frequency-dependent sodium channel block in nerve by local anesthetics. J Pharmacol Exp Ther. 1980 Apr;213(1):114–119. [PubMed] [Google Scholar]
  16. Creveling C. R., Bell M. E., Burke T. R., Jr, Chang E., Lewandowski-Lovenberg G. A., Kim C. H., Rice K. C., Daly J. W. Procaine isothiocyanate: an irreversible inhibitor of the specific binding of [3H]batrachotoxinin-A benzoate to sodium channels. Neurochem Res. 1990 Apr;15(4):441–448. doi: 10.1007/BF00969931. [DOI] [PubMed] [Google Scholar]
  17. Creveling C. R., McNeal E. T., McCulloh D. H., Daly J. W. Membrane potentials in cell-free preparations from guinea pig cerebral cortex: effect of depolarizing agents and cyclic nucleotides. J Neurochem. 1980 Oct;35(4):922–932. doi: 10.1111/j.1471-4159.1980.tb07091.x. [DOI] [PubMed] [Google Scholar]
  18. Dodd P. R., Hardy J. A., Oakley A. E., Edwardson J. A., Perry E. K., Delaunoy J. P. A rapid method for preparing synaptosomes: comparison, with alternative procedures. Brain Res. 1981 Dec 7;226(1-2):107–118. doi: 10.1016/0006-8993(81)91086-6. [DOI] [PubMed] [Google Scholar]
  19. Fleet G. W., Knowles J. R., Porter R. R. The antibody binding site. Labelling of a specific antibody against the photo-precursor of an aryl nitrene. Biochem J. 1972 Jul;128(3):499–508. doi: 10.1042/bj1280499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fox J. M. Selective blocking of the nodal sodium channels by ultraviolet radiation. II. The interaction of Ca++, H+, and membrane potential. Pflugers Arch. 1974;351(4):303–314. doi: 10.1007/BF00593316. [DOI] [PubMed] [Google Scholar]
  21. Gilliam F. R., 3rd, Starmer C. F., Grant A. O. Blockade of rabbit atrial sodium channels by lidocaine. Characterization of continuous and frequency-dependent blocking. Circ Res. 1989 Sep;65(3):723–739. doi: 10.1161/01.res.65.3.723. [DOI] [PubMed] [Google Scholar]
  22. Gusovsky F., Nishizawa Y., Padgett W., McNeal E. T., Rice K., Kim C. H., Creveling C. R., Daly J. W. Voltage-dependent sodium channels in synaptoneurosomes: studies with 22Na+ influx and [3H]saxitoxin and [3H]batrachotoxinin-A 20-alpha-benzoate binding. Effects of proparacaine isothiocyanate. Brain Res. 1990 Jun 4;518(1-2):101–106. doi: 10.1016/0006-8993(90)90959-f. [DOI] [PubMed] [Google Scholar]
  23. Hahin R., Strichartz G. Effects of deuterium oxide on the rate and dissociation constants for saxitoxin and tetrodotoxin action. Voltage-clamp studies on frog myelinated nerve. J Gen Physiol. 1981 Aug;78(2):113–139. doi: 10.1085/jgp.78.2.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  25. Hill R. J., Duff H. J., Sheldon R. S. Determinants of stereospecific binding of type I antiarrhythmic drugs to cardiac sodium channels. Mol Pharmacol. 1988 Nov;34(5):659–663. [PubMed] [Google Scholar]
  26. Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol. 1977 Apr;69(4):497–515. doi: 10.1085/jgp.69.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hondeghem L. M., Katzung B. G. Antiarrhythmic agents: the modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. Annu Rev Pharmacol Toxicol. 1984;24:387–423. doi: 10.1146/annurev.pa.24.040184.002131. [DOI] [PubMed] [Google Scholar]
  28. Hondeghem L. M., Katzung B. G. Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta. 1977 Nov 14;472(3-4):373–398. doi: 10.1016/0304-4157(77)90003-x. [DOI] [PubMed] [Google Scholar]
  29. Ji T. H. The application of chemical crosslinking for studies on cell membranes and the identification of surface reporters. Biochim Biophys Acta. 1979 Apr 23;559(1):39–69. doi: 10.1016/0304-4157(79)90007-8. [DOI] [PubMed] [Google Scholar]
  30. Lee-Son S., Wang G. K., Concus A., Crill E., Strichartz G. Stereoselective inhibition of neuronal sodium channels by local anesthetics. Evidence for two sites of action? Anesthesiology. 1992 Aug;77(2):324–335. doi: 10.1097/00000542-199208000-00016. [DOI] [PubMed] [Google Scholar]
  31. McNeal E. T., Lewandowski G. A., Daly J. W., Creveling C. R. [3H]Batrachotoxinin A 20 alpha-benzoate binding to voltage-sensitive sodium channels: a rapid and quantitative assay for local anesthetic activity in a variety of drugs. J Med Chem. 1985 Mar;28(3):381–388. doi: 10.1021/jm00381a019. [DOI] [PubMed] [Google Scholar]
  32. Neumcke B., Schwarz W., Stämpfli R. Block of Na channels in the membrane of myelinated nerve by benzocaine. Pflugers Arch. 1981 Jun;390(3):230–236. doi: 10.1007/BF00658267. [DOI] [PubMed] [Google Scholar]
  33. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  34. Postma S. W., Catterall W. A. Inhibition of binding of [3H]batrachotoxinin A 20-alpha-benzoate to sodium channels by local anesthetics. Mol Pharmacol. 1984 Mar;25(2):219–227. [PubMed] [Google Scholar]
  35. Rando T. A., Wang G. K., Strichartz G. R. The interaction between the activator agents batrachotoxin and veratridine and the gating processes of neuronal sodium channels. Mol Pharmacol. 1986 May;29(5):467–477. [PubMed] [Google Scholar]
  36. Schwarz W., Palade P. T., Hille B. Local anesthetics. Effect of pH on use-dependent block of sodium channels in frog muscle. Biophys J. 1977 Dec;20(3):343–368. doi: 10.1016/S0006-3495(77)85554-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sheldon R. S., Cannon N. J., Duff H. J. A receptor for type I antiarrhythmic drugs associated with rat cardiac sodium channels. Circ Res. 1987 Oct;61(4):492–497. doi: 10.1161/01.res.61.4.492. [DOI] [PubMed] [Google Scholar]
  38. Starmer C. F., Grant A. O., Strauss H. C. Mechanisms of use-dependent block of sodium channels in excitable membranes by local anesthetics. Biophys J. 1984 Jul;46(1):15–27. doi: 10.1016/S0006-3495(84)83994-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Strichartz G. R. The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol. 1973 Jul;62(1):37–57. doi: 10.1085/jgp.62.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Strichartz G. Structure of the saxitoxin binding site at sodium channels in nerve membranes. Exchange of tritium from bound toxin molecules. Mol Pharmacol. 1982 Mar;21(2):343–350. [PubMed] [Google Scholar]
  41. Tamkun M. M., Catterall W. A. Ion flux studies of voltage-sensitive sodium channels in synaptic nerve-ending particles. Mol Pharmacol. 1981 Jan;19(1):78–86. [PubMed] [Google Scholar]
  42. VON MURALT A., STAMPFLI R. Die photochemische Wirkung von Ultraviolettlicht auf den erregten Ranvierschen Knoten der einzelnen Nervenfaser; Beiträge zur Methode der stroboskopischen Photochemie. Helv Physiol Pharmacol Acta. 1953;11(2):182–193. [PubMed] [Google Scholar]
  43. Wang G. K., Strichartz G. R. Purification and physiological characterization of neurotoxins from venoms of the scorpions centruroides sculpturatus and leiurus quinquestriatus. Mol Pharmacol. 1983 Mar;23(2):519–533. [PubMed] [Google Scholar]
  44. Wang G. K., Wang S. Y. Altered stereoselectivity of cocaine and bupivacaine isomers in normal and batrachotoxin-modified Na+ channels. J Gen Physiol. 1992 Dec;100(6):1003–1020. doi: 10.1085/jgp.100.6.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Weigele J. B., Barchi R. L. Ultraviolet irradiation produces loss of saxitoxin binding to sodium channels in rat synaptosomes. J Neurochem. 1980 Aug;35(2):430–435. doi: 10.1111/j.1471-4159.1980.tb06283.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES