Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1995 May 1;105(5):643–660. doi: 10.1085/jgp.105.5.643

Single-channel properties of a volume-sensitive anion conductance. Current activation occurs by abrupt switching of closed channels to an open state

PMCID: PMC2216948  PMID: 7544823

Abstract

Swelling-induced loss of organic osmolytes from cells is mediated by an outwardly rectified, volume-sensitive anion channel termed VSOAC (Volume-Sensitive Organic osmolyte/Anion Channel). Similar swelling- activated anion channels have been described in numerous cell types. The unitary conductance and gating kinetics of VSOAC have been uncertain, however. Stationary noise analysis and single-channel measurements have produced estimates for the unitary conductance of swelling-activated, outwardly rectified anion channels that vary by > 15-fold. We used a combination of stationary and nonstationary noise analyses and single-channel measurements to estimate the unitary properties of VSOAC. Current noise was analyzed initially by assuming that graded changes in macroscopic current were due to graded changes in channel open probability. Stationary noise analysis predicts that the unitary conductance of VSOAC is approximately 1 pS at 0 mV. In sharp contrast, nonstationary noise analysis demonstrates that VSOAC is a 40-50 pS channel at +120 mV (approximately 15 pS at 0 mV). Measurement of single-channel events in whole-cell currents and outside- out membrane patches confirmed the nonstationary noise analysis results. The discrepancy between stationary and nonstationary noise analyses and single-channel measurements indicates that swelling- induced current activation is not mediated by a graded increase in channel open probability as assumed initially. Instead, activation of VSOAC appears to involve an abrupt switching of single channels from an OFF state, where channel open probability is zero, to an ON state, where open probability is near unity.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe T., Takeuchi K., Ishii K., Abe K. Molecular cloning and expression of a rat cDNA encoding MDCK-type chloride channel. Biochim Biophys Acta. 1993 Jun 25;1173(3):353–356. doi: 10.1016/0167-4781(93)90138-4. [DOI] [PubMed] [Google Scholar]
  2. Ackerman M. J., Wickman K. D., Clapham D. E. Hypotonicity activates a native chloride current in Xenopus oocytes. J Gen Physiol. 1994 Feb;103(2):153–179. doi: 10.1085/jgp.103.2.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Banderali U., Roy G. Anion channels for amino acids in MDCK cells. Am J Physiol. 1992 Dec;263(6 Pt 1):C1200–C1207. doi: 10.1152/ajpcell.1992.263.6.C1200. [DOI] [PubMed] [Google Scholar]
  4. Benz R., Bauer K. Permeation of hydrophilic molecules through the outer membrane of gram-negative bacteria. Review on bacterial porins. Eur J Biochem. 1988 Sep 1;176(1):1–19. doi: 10.1111/j.1432-1033.1988.tb14245.x. [DOI] [PubMed] [Google Scholar]
  5. Benz R. Structure and function of porins from gram-negative bacteria. Annu Rev Microbiol. 1988;42:359–393. doi: 10.1146/annurev.mi.42.100188.002043. [DOI] [PubMed] [Google Scholar]
  6. Berrier C., Coulombe A., Houssin C., Ghazi A. Fast and slow kinetics of porin channels from Escherichia coli reconstituted into giant liposomes and studied by patch-clamp. FEBS Lett. 1992 Jul 20;306(2-3):251–256. doi: 10.1016/0014-5793(92)81011-a. [DOI] [PubMed] [Google Scholar]
  7. Berrier C., Coulombe A., Houssin C., Ghazi A. Voltage-dependent cationic channel of Escherichia coli. J Membr Biol. 1993 Apr;133(2):119–127. doi: 10.1007/BF00233793. [DOI] [PubMed] [Google Scholar]
  8. Conti F., Hille B., Nonner W. Non-stationary fluctuations of the potassium conductance at the node of ranvier of the frog. J Physiol. 1984 Aug;353:199–230. doi: 10.1113/jphysiol.1984.sp015332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doroshenko P., Neher E. Volume-sensitive chloride conductance in bovine chromaffin cell membrane. J Physiol. 1992 Apr;449:197–218. doi: 10.1113/jphysiol.1992.sp019082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eisele J. L., Rosenbusch J. P. In vitro folding and oligomerization of a membrane protein. Transition of bacterial porin from random coil to native conformation. J Biol Chem. 1990 Jun 25;265(18):10217–10220. [PubMed] [Google Scholar]
  11. Garcia-Perez A., Burg M. B. Renal medullary organic osmolytes. Physiol Rev. 1991 Oct;71(4):1081–1115. doi: 10.1152/physrev.1991.71.4.1081. [DOI] [PubMed] [Google Scholar]
  12. Heinemann S. H., Conti F. Nonstationary noise analysis and application to patch clamp recordings. Methods Enzymol. 1992;207:131–148. doi: 10.1016/0076-6879(92)07009-d. [DOI] [PubMed] [Google Scholar]
  13. Jackson P. S., Morrison R., Strange K. The volume-sensitive organic osmolyte-anion channel VSOAC is regulated by nonhydrolytic ATP binding. Am J Physiol. 1994 Nov;267(5 Pt 1):C1203–C1209. doi: 10.1152/ajpcell.1994.267.5.C1203. [DOI] [PubMed] [Google Scholar]
  14. Jackson P. S., Strange K. Characterization of the voltage-dependent properties of a volume-sensitive anion conductance. J Gen Physiol. 1995 May;105(5):661–676. doi: 10.1085/jgp.105.5.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jackson P. S., Strange K. Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux. Am J Physiol. 1993 Dec;265(6 Pt 1):C1489–C1500. doi: 10.1152/ajpcell.1993.265.6.C1489. [DOI] [PubMed] [Google Scholar]
  16. Kirk K., Ellory J. C., Young J. D. Transport of organic substrates via a volume-activated channel. J Biol Chem. 1992 Nov 25;267(33):23475–23478. [PubMed] [Google Scholar]
  17. Krapivinsky G. B., Ackerman M. J., Gordon E. A., Krapivinsky L. D., Clapham D. E. Molecular characterization of a swelling-induced chloride conductance regulatory protein, pICln. Cell. 1994 Feb 11;76(3):439–448. doi: 10.1016/0092-8674(94)90109-0. [DOI] [PubMed] [Google Scholar]
  18. Lewis R. S., Ross P. E., Cahalan M. D. Chloride channels activated by osmotic stress in T lymphocytes. J Gen Physiol. 1993 Jun;101(6):801–826. doi: 10.1085/jgp.101.6.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McManus M., Serhan C., Jackson P., Strange K. Ketoconazole blocks organic osmolyte efflux independently of its effect on arachidonic acid conversion. Am J Physiol. 1994 Jul;267(1 Pt 1):C266–C271. doi: 10.1152/ajpcell.1994.267.1.C266. [DOI] [PubMed] [Google Scholar]
  20. Nilius B., Oike M., Zahradnik I., Droogmans G. Activation of a Cl- current by hypotonic volume increase in human endothelial cells. J Gen Physiol. 1994 May;103(5):787–805. doi: 10.1085/jgp.103.5.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Okada Y., Petersen C. C., Kubo M., Morishima S., Tominaga M. Osmotic swelling activates intermediate-conductance Cl- channels in human intestinal epithelial cells. Jpn J Physiol. 1994;44(4):403–409. doi: 10.2170/jjphysiol.44.403. [DOI] [PubMed] [Google Scholar]
  22. Paulmichl M., Li Y., Wickman K., Ackerman M., Peralta E., Clapham D. New mammalian chloride channel identified by expression cloning. Nature. 1992 Mar 19;356(6366):238–241. doi: 10.1038/356238a0. [DOI] [PubMed] [Google Scholar]
  23. Pfaller R., Freitag H., Harmey M. A., Benz R., Neupert W. A water-soluble form of porin from the mitochondrial outer membrane of Neurospora crassa. Properties and relationship to the biosynthetic precursor form. J Biol Chem. 1985 Jul 5;260(13):8188–8193. [PubMed] [Google Scholar]
  24. Rosenbusch J. P. Structural and functional properties of porin channels in E. coli outer membranes. Experientia. 1990 Feb 15;46(2):167–173. [PubMed] [Google Scholar]
  25. Sigworth F. J. The variance of sodium current fluctuations at the node of Ranvier. J Physiol. 1980 Oct;307:97–129. doi: 10.1113/jphysiol.1980.sp013426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Solc C. K., Wine J. J. Swelling-induced and depolarization-induced C1-channels in normal and cystic fibrosis epithelial cells. Am J Physiol. 1991 Oct;261(4 Pt 1):C658–C674. doi: 10.1152/ajpcell.1991.261.4.C658. [DOI] [PubMed] [Google Scholar]
  27. Stoddard J. S., Steinbach J. H., Simchowitz L. Whole cell Cl- currents in human neutrophils induced by cell swelling. Am J Physiol. 1993 Jul;265(1 Pt 1):C156–C165. doi: 10.1152/ajpcell.1993.265.1.C156. [DOI] [PubMed] [Google Scholar]
  28. Worrell R. T., Butt A. G., Cliff W. H., Frizzell R. A. A volume-sensitive chloride conductance in human colonic cell line T84. Am J Physiol. 1989 Jun;256(6 Pt 1):C1111–C1119. doi: 10.1152/ajpcell.1989.256.6.C1111. [DOI] [PubMed] [Google Scholar]
  29. Wunder U. R., Colombini M. Patch clamping VDAC in liposomes containing whole mitochondrial membranes. J Membr Biol. 1991 Jul;123(1):83–91. doi: 10.1007/BF01993966. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES