Abstract
Larval sea lamprey inhabit freshwater streams and migrate to oceans or lakes to feed after a radical metamorphosis; subsequently, mature adults return to streams to spawn. Previous observations suggested that lamprey utilize the odor of conspecific larvae to select streams for spawning. Here we report biochemical and electrophysiological evidence that this odor is comprised of two unique bile acids released by larvae. High performance liquid chromatography and mass spectrometry demonstrated that larval sea lamprey produce and release two unique bile acids, allocholic acid (ACA) and petromyzonol sulfate (PS). Electro-olfactogram (EOG) recording also demonstrated that the olfactory system of migratory adult sea lamprey is acutely and specifically sensitive to ACA and PS; detection thresholds for these compounds were approximately 10(-12) M. ACA and PS were the most potent of 38 bile acids tested and cross-adaptation experiments suggested that adult sea lamprey have specific olfactory receptor sites associated with independent signal transduction pathways for these bile acids. These receptor sites specifically recognize the key substituents of ACA and PS such as a 5 alpha-hydrogen, three axial hydroxyls, and a C-24 sulfate ester or carboxyl. In conclusion, the unique lamprey bile acids, ACA and PS, are potent and specific stimulants of the adult olfactory system, strongly supporting the hypothesis that these unique bile acids function as migratory pheromones in lamprey.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amos B., Anderson I. G., Haslewood G. A., Tökes L. Bile salts of the lungfishes Lepidosiren, Neoceratodus and Protopterus and those of the coelacanth Latimeria chalumnae Smith. Biochem J. 1977 Feb 1;161(2):201–204. doi: 10.1042/bj1610201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cowen A. E., Campbell C. B. Bile salt metabolism. I. The physiology of bile salts. Aust N Z J Med. 1977 Dec;7(6):579–586. doi: 10.1111/j.1445-5994.1977.tb02312.x. [DOI] [PubMed] [Google Scholar]
- Denton J. E., Yousef M. K., Yousef I. M., Kuksis Bile acid composition of rainbow trout, Salmo gairdneri. Lipids. 1974 Dec;9(12):945–951. doi: 10.1007/BF02533816. [DOI] [PubMed] [Google Scholar]
- Døving K. B., Selset R., Thommesen G. Olfactory sensitivity to bile acids in salmonid fishes. Acta Physiol Scand. 1980 Feb;108(2):123–131. doi: 10.1111/j.1748-1716.1980.tb06509.x. [DOI] [PubMed] [Google Scholar]
- Gallaher D. D., Locket P. L., Gallaher C. M. Bile acid metabolism in rats fed two levels of corn oil and brans of oat, rye and barley and sugar beet fiber. J Nutr. 1992 Mar;122(3):473–481. doi: 10.1093/jn/122.3.473. [DOI] [PubMed] [Google Scholar]
- Haslewood G. A. Bile salt evolution. J Lipid Res. 1967 Nov;8(6):535–550. [PubMed] [Google Scholar]
- Haslewood G. A., Tökés L. Comparative studies of bile salts. Bile salts of the lamprey Petromyzon marinus L. Biochem J. 1969 Sep;114(2):179–184. doi: 10.1042/bj1140179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hay D. W., Carey M. C. Chemical species of lipids in bile. Hepatology. 1990 Sep;12(3 Pt 2):6S–16S. [PubMed] [Google Scholar]
- Hellstrøm T., Døving K. B. Chemoreception of taurocholate in anosmic and sham-operated cod, Gadus morhua. Behav Brain Res. 1986 Aug;21(2):155–162. doi: 10.1016/0166-4328(86)90093-8. [DOI] [PubMed] [Google Scholar]
- Hofmann A. F., Sjövall J., Kurz G., Radominska A., Schteingart C. D., Tint G. S., Vlahcevic Z. R., Setchell K. D. A proposed nomenclature for bile acids. J Lipid Res. 1992 Apr;33(4):599–604. [PubMed] [Google Scholar]
- Locket P. L., Gallaher D. D. An improved procedure for bile acid extraction and purification and tissue distribution in the rat. Lipids. 1989 Mar;24(3):221–223. doi: 10.1007/BF02535238. [DOI] [PubMed] [Google Scholar]
- Nordeng H. Is the local orientation of anadromous fishes determined by pheromones ? Nature. 1971 Oct 8;233(5319):411–413. doi: 10.1038/233411a0. [DOI] [PubMed] [Google Scholar]
- Scholz A. T., Horrall R. M., Cooper J. C., Hasler A. D. Imprinting to chemical cues: the basis for home stream selection in salmon. Science. 1976 Jun 18;192(4245):1247–1249. doi: 10.1126/science.1273590. [DOI] [PubMed] [Google Scholar]
- Selset R., Døving K. B. Behaviour of mature anadromous char (Salmo alpinus L.) towards odorants produced by smolts of their own population. Acta Physiol Scand. 1980 Feb;108(2):113–122. doi: 10.1111/j.1748-1716.1980.tb06508.x. [DOI] [PubMed] [Google Scholar]
- Sørensen P. W., Scott A. P. The evolution of hormonal sex pheromones in teleost fish: poor correlation between the pattern of steroid release by goldfish and olfactory sensitivity suggests that these cues evolved as a result of chemical spying rather than signal specialization. Acta Physiol Scand. 1994 Oct;152(2):191–205. doi: 10.1111/j.1748-1716.1994.tb09799.x. [DOI] [PubMed] [Google Scholar]
- Une M., Goto T., Kihira K., Kuramoto T., Hagiwara K., Nakajima T., Hoshita T. Isolation and identification of bile salts conjugated with cysteinolic acid from bile of the red seabream, Pagrosomus major. J Lipid Res. 1991 Oct;32(10):1619–1623. [PubMed] [Google Scholar]
- Yamamoto K., Sargent P. A., Fisher M. M., Youson J. H. Periductal fibrosis and lipocytes (fat-storing cells or Ito cells) during biliary atresia in the lamprey. Hepatology. 1986 Jan-Feb;6(1):54–59. doi: 10.1002/hep.1840060111. [DOI] [PubMed] [Google Scholar]