Abstract
Short-chain fatty acids (SCFAs) are the major anions in the colonic lumen. Experiments studied how intracellular pH (pHi) of isolated colonocytes was affected by exposure to SCFAs normally found in the colon. Isolated crypt fragments were loaded with SNARF-1 (a fluorescent dye with pH-sensitive excitation and emission spectra) and studied in a digital imaging microscope. Intracellular pH was measured in individual colonocytes as the ratio of fluorescence intensity in response to alternating excitation wavelengths (575/505 nm). After exposure to 65 mM acetate, propionate, n-butyrate, or iso-butyrate in isosmotic Na(+)- free media (substituted with tetramethylammonia), all colonocytes acidified rapidly and then > 90% demonstrated a pHi alkalinization (Na(+)-independent pHi recovery). Upon subsequent removal of the SCFA, pHi alkalinized beyond the starting pHi (a pHi overshoot). Using propionate as a test SCFA, experiments demonstrate that the acidification and pHi overshoot are explained by transmembrane influx and efflux of nonionized SCFA, respectively. The basis for the pHi overshoot is shown to be accumulation of propionate during pHi alkalinization. The Na(+)-independent pHi recovery (a) demonstrates saturable propionate activation kinetics; (b) demonstrates substrate specificity for unmodified aliphatic carbon chains; (c) occurs after exposure to SCFAs of widely different metabolic activity, (d) is electroneutral; and (e) is not inhibited by changes in the K+ gradient, Cl- gradient or addition of the anion transport inhibitors DIDS (1 mM), SITS (1 mM), alpha-cyano-4-hydroxycinnamate (4 mM), or probenicid (1 mM). Results suggest that most mouse colonocytes have a previously unreported SCFA transporter which mediates Na(+)-independent pHi recovery.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronson P. S., Nee J., Suhm M. A. Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles. Nature. 1982 Sep 9;299(5879):161–163. doi: 10.1038/299161a0. [DOI] [PubMed] [Google Scholar]
- Bergman E. N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. 1990 Apr;70(2):567–590. doi: 10.1152/physrev.1990.70.2.567. [DOI] [PubMed] [Google Scholar]
- Binder H. J., Mehta P. Short-chain fatty acids stimulate active sodium and chloride absorption in vitro in the rat distal colon. Gastroenterology. 1989 Apr;96(4):989–996. doi: 10.1016/0016-5085(89)91614-4. [DOI] [PubMed] [Google Scholar]
- Buckler K. J., Vaughan-Jones R. D. Application of a new pH-sensitive fluoroprobe (carboxy-SNARF-1) for intracellular pH measurement in small, isolated cells. Pflugers Arch. 1990 Oct;417(2):234–239. doi: 10.1007/BF00370705. [DOI] [PubMed] [Google Scholar]
- Bugaut M. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp Biochem Physiol B. 1987;86(3):439–472. doi: 10.1016/0305-0491(87)90433-0. [DOI] [PubMed] [Google Scholar]
- Cummings J. H., Pomare E. W., Branch W. J., Naylor C. P., Macfarlane G. T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987 Oct;28(10):1221–1227. doi: 10.1136/gut.28.10.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diener M., Helmle-Kolb C., Murer H., Scharrer E. Effect of short-chain fatty acids on cell volume and intracellular pH in rat distal colon. Pflugers Arch. 1993 Aug;424(3-4):216–223. doi: 10.1007/BF00384345. [DOI] [PubMed] [Google Scholar]
- Feldman G. M., Ziyadeh F. N., Mills J. W., Booz G. W., Kleinzeller A. Propionate induces cell swelling and K+ accumulation in shark rectal gland. Am J Physiol. 1989 Aug;257(2 Pt 1):C377–C384. doi: 10.1152/ajpcell.1989.257.2.C377. [DOI] [PubMed] [Google Scholar]
- Garcia C. K., Goldstein J. L., Pathak R. K., Anderson R. G., Brown M. S. Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell. 1994 Mar 11;76(5):865–873. doi: 10.1016/0092-8674(94)90361-1. [DOI] [PubMed] [Google Scholar]
- Grinstein S., Goetz J. D., Furuya W., Rothstein A., Gelfand E. W. Amiloride-sensitive Na+-H+ exchange in platelets and leukocytes: detection by electronic cell sizing. Am J Physiol. 1984 Sep;247(3 Pt 1):C293–C298. doi: 10.1152/ajpcell.1984.247.3.C293. [DOI] [PubMed] [Google Scholar]
- Guggino W. B., Guggino S. E. Renal anion transport. Kidney Int. 1989 Sep;36(3):385–391. doi: 10.1038/ki.1989.207. [DOI] [PubMed] [Google Scholar]
- Gäbel G., Vogler S., Martens H. Short-chain fatty acids and CO2 as regulators of Na+ and Cl- absorption in isolated sheep rumen mucosa. J Comp Physiol B. 1991;161(4):419–426. doi: 10.1007/BF00260803. [DOI] [PubMed] [Google Scholar]
- Harig J. M., Soergel K. H., Barry J. A., Ramaswamy K. Transport of propionate by human ileal brush-border membrane vesicles. Am J Physiol. 1991 May;260(5 Pt 1):G776–G782. doi: 10.1152/ajpgi.1991.260.5.G776. [DOI] [PubMed] [Google Scholar]
- Holtug K., Rasmussen H. S., Mortensen P. B. An in vitro study of short-chain fatty acid concentrations, production and absorption in pig (Sus scrofa) colon. Comp Biochem Physiol Comp Physiol. 1992 Sep;103(1):189–197. doi: 10.1016/0300-9629(92)90262-o. [DOI] [PubMed] [Google Scholar]
- Høverstad T., Midtvedt T., Bøhmer T. Short-chain fatty acids in intestinal content of germfree mice monocontaminated with Escherichia coli or Clostridium difficile. Scand J Gastroenterol. 1985 Apr;20(3):373–380. doi: 10.3109/00365528509091667. [DOI] [PubMed] [Google Scholar]
- Høverstad T., Midtvedt T. Short-chain fatty acids in germfree mice and rats. J Nutr. 1986 Sep;116(9):1772–1776. doi: 10.1093/jn/116.9.1772. [DOI] [PubMed] [Google Scholar]
- Jackson M. J., Williamson A. M., Dombrowski W. A., Garner D. E. Intestinal transport of weak electrolytes: Determinants of influx at the luminal surface. J Gen Physiol. 1978 Mar;71(3):301–327. doi: 10.1085/jgp.71.3.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaunitz J. D. Preparation and characterization of viable epithelial cells from rabbit distal colon. Am J Physiol. 1988 Apr;254(4 Pt 1):G502–G512. doi: 10.1152/ajpgi.1988.254.4.G502. [DOI] [PubMed] [Google Scholar]
- Macfarlane G. T., Gibson G. R., Cummings J. H. Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol. 1992 Jan;72(1):57–64. doi: 10.1111/j.1365-2672.1992.tb04882.x. [DOI] [PubMed] [Google Scholar]
- Mascolo N., Rajendran V. M., Binder H. J. Mechanism of short-chain fatty acid uptake by apical membrane vesicles of rat distal colon. Gastroenterology. 1991 Aug;101(2):331–338. doi: 10.1016/0016-5085(91)90008-9. [DOI] [PubMed] [Google Scholar]
- Montrose M. H., Condrau M. A., Murer H. Flow cytometric analysis of intracellular pH in cultured opossum kidney (OK) cells. J Membr Biol. 1989 Apr;108(1):31–43. doi: 10.1007/BF01870423. [DOI] [PubMed] [Google Scholar]
- Montrose M. H., Friedrich T., Murer H. Measurements of intracellular pH in single LLC-PK1 cells: recovery from an acid load via basolateral Na+/H+ exchange. J Membr Biol. 1987;97(1):63–78. doi: 10.1007/BF01869615. [DOI] [PubMed] [Google Scholar]
- Montrose M. H., Knoblauch C., Murer H. Separate control of regulatory volume increase and Na+-H+ exchange by cultured renal cells. Am J Physiol. 1988 Jul;255(1 Pt 1):C76–C85. doi: 10.1152/ajpcell.1988.255.1.C76. [DOI] [PubMed] [Google Scholar]
- Nakhoul N. L., Boron W. F. Acetate transport in the S3 segment of the rabbit proximal tubule and its effect on intracellular pH. J Gen Physiol. 1988 Sep;92(3):395–412. doi: 10.1085/jgp.92.3.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakhoul N. L., Lopes A. G., Chaillet J. R., Boron W. F. Intracellular pH regulation in the S3 segment of the rabbit proximal tubule in HCO3- -free solutions. J Gen Physiol. 1988 Sep;92(3):369–393. doi: 10.1085/jgp.92.3.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naupert C., Rommel K. Absorption of short and medium chain fatty acids in the jejunum of the rat. Z Klin Chem Klin Biochem. 1975 Dec;13(12):553–562. doi: 10.1515/cclm.1975.13.12.553. [DOI] [PubMed] [Google Scholar]
- Petersen K. U., Wood J. R., Schulze G., Heintze K. Stimulation of gallbladder fluid and electrolyte absorption by butyrate. J Membr Biol. 1981;62(3):183–193. doi: 10.1007/BF01998164. [DOI] [PubMed] [Google Scholar]
- Poole R. C., Halestrap A. P. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol. 1993 Apr;264(4 Pt 1):C761–C782. doi: 10.1152/ajpcell.1993.264.4.C761. [DOI] [PubMed] [Google Scholar]
- Rajendran V. M., Binder H. J. Apical membrane Cl-butyrate exchange: mechanism of short chain fatty acid stimulation of active chloride absorption in rat distal colon. J Membr Biol. 1994 Jul;141(1):51–58. doi: 10.1007/BF00232873. [DOI] [PubMed] [Google Scholar]
- Reynolds D. A., Rajendran V. M., Binder H. J. Bicarbonate-stimulated [14C]butyrate uptake in basolateral membrane vesicles of rat distal colon. Gastroenterology. 1993 Sep;105(3):725–732. doi: 10.1016/0016-5085(93)90889-k. [DOI] [PubMed] [Google Scholar]
- Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
- Rosenberg S. O., Fadil T., Schuster V. L. A basolateral lactate/H+ co-transporter in Madin-Darby Canine Kidney (MDCK) cells. Biochem J. 1993 Jan 1;289(Pt 1):263–268. doi: 10.1042/bj2890263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rowe W. A., Blackmon D. L., Montrose M. H. Propionate activates multiple ion transport mechanisms in the HT29-18-C1 human colon cell line. Am J Physiol. 1993 Sep;265(3 Pt 1):G564–G571. doi: 10.1152/ajpgi.1993.265.3.G564. [DOI] [PubMed] [Google Scholar]
- Rowe W. A., Lesho M. J., Montrose M. H. Polarized Na+/H+ exchange function is pliable in response to transepithelial gradients of propionate. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6166–6170. doi: 10.1073/pnas.91.13.6166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rönnau K., Guth D., von Engelhardt W. Absorption of dissociated and undissociated short-chain fatty acids across the colonic epithelium of guinea-pig. Q J Exp Physiol. 1989 Jul;74(4):511–519. doi: 10.1113/expphysiol.1989.sp003298. [DOI] [PubMed] [Google Scholar]
- Schmitt M. G., Jr, Soergel K. H., Wood C. M. Absorption of short chain fatty acids from the human jejunum. Gastroenterology. 1976 Feb;70(2):211–215. [PubMed] [Google Scholar]
- Sellin J. H., DeSoignie R. Short-chain fatty acid absorption in rabbit colon in vitro. Gastroenterology. 1990 Sep;99(3):676–683. doi: 10.1016/0016-5085(90)90954-y. [DOI] [PubMed] [Google Scholar]
- Siebens A. W., Boron W. F. Effect of electroneutral luminal and basolateral lactate transport on intracellular pH in salamander proximal tubules. J Gen Physiol. 1987 Dec;90(6):799–831. doi: 10.1085/jgp.90.6.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stein J., Schröder O., Milovic V., Caspary W. F. Mercaptopropionate inhibits butyrate uptake in isolated apical membrane vesicles of the rat distal colon. Gastroenterology. 1995 Mar;108(3):673–679. doi: 10.1016/0016-5085(95)90438-7. [DOI] [PubMed] [Google Scholar]
- WRONG O., METCALFE-GIBSON A., MORRISON R. B., NG S. T., HOWARD A. V. IN VIVO DIALYSIS OF FAECES AS A METHOD OF STOOL ANALYSIS. I. TECHNIQUE AND RESULTS IN NORMAL SUBJECTS. Clin Sci. 1965 Apr;28:357–375. [PubMed] [Google Scholar]
- Walter A., Gutknecht J. Monocarboxylic acid permeation through lipid bilayer membranes. J Membr Biol. 1984;77(3):255–264. doi: 10.1007/BF01870573. [DOI] [PubMed] [Google Scholar]
- Watson A. J., Levine S., Donowitz M., Montrose M. H. Kinetics and regulation of a polarized Na(+)-H+ exchanger from Caco-2 cells, a human intestinal cell line. Am J Physiol. 1991 Aug;261(2 Pt 1):G229–G238. doi: 10.1152/ajpgi.1991.261.2.G229. [DOI] [PubMed] [Google Scholar]
- Weaver G. A., Krause J. A., Miller T. L., Wolin M. J. Constancy of glucose and starch fermentations by two different human faecal microbial communities. Gut. 1989 Jan;30(1):19–25. doi: 10.1136/gut.30.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weigand E., Young J. W., McGilliard A. D. Volatile fatty acid metabolism by rumen mucosa from cattle fed hay or grain. J Dairy Sci. 1975 Sep;58(9):1294–1300. doi: 10.3168/jds.S0022-0302(75)84709-6. [DOI] [PubMed] [Google Scholar]
- von Engelhardt W., Burmester M., Hansen K., Becker G., Rechkemmer G. Effects of amiloride and ouabain on short-chain fatty acid transport in guinea-pig large intestine. J Physiol. 1993 Jan;460:455–466. doi: 10.1113/jphysiol.1993.sp019481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Engelhardt W., Rechkemmer G. Segmental differences of short-chain fatty acid transport across guinea-pig large intestine. Exp Physiol. 1992 May;77(3):491–499. doi: 10.1113/expphysiol.1992.sp003609. [DOI] [PubMed] [Google Scholar]
